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Ergodicity reveals assistance and learning from physical
human-robot interaction
Kathleen Fitzsimons1, Ana Maria Acosta2, Julius P. A. Dewald2,3,4, Todd D. Murphey1,2*

This paper applies information theoretic principles to the investigation of physical human-robot interaction. Drawing
from the study of human perception and neural encoding, information theoretic approaches offer a perspective that
enables quantitatively interpreting the body as an information channel and bodily motion as an information-carrying
signal. We show that ergodicity, which can be interpreted as the degree to which a trajectory encodes information
about a task, correctly predicts changes due to reduction of a person’s existing deficit or the addition of algorithmic
assistance. The measure also captures changes from training with robotic assistance. Other common measures for
assessment failed to capture at least one of these effects. This information-based interpretation of motion can be ap-
plied broadly, in the evaluation and design of human-machine interactions, in learning by demonstration paradigms,
or in human motion analysis.
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INTRODUCTION
Hundreds of devices have been designed and built to facilitate forceful
interactions between humans and an autonomous system for the
purposes of training, safe collaboration, and physical task assistance
(1–3). The goal of these systems is to augment the capabilities of the
human either by providing feedback that enhances the training of a
person in a certain task or by eliminating an existing deficit, such as
weakness or discoordination due to a neuromotor pathology. As a
result, these robotic systems have unique requirements for sensing,
actuation, and algorithmic design. In particular, the algorithmic
component must be able to infer the quality of the measured behaviors
or tasks performed by the joint human-robot system, implying the
use of an appropriate metric as the basis for evaluating and modulating
the human-robot interaction. However, it is unclear what metrics are
appropriate for automating human-machine collaboration. Should
one use measures from traditional robotic control, such as trajectory
error, biologically relevant measures (e.g., energy), or task-specific
measures of motion quality? The choice of metric has implications
beyond modulation of the interaction, including evaluation of the
effectiveness of the physical interaction between the human and robot.
The main purposes of the interaction should be discernible improve-
ments in performance from the assistance and learning from the assist-
ance. Here, we show that ergodicity—ameasure of the task information
encoded by amovement—can predict the presence of robotic assistance
and detect the training effect of assistance.

In the human body, sensory information and motor commands
are transmitted by nerve fibers conducting action potentials from
one synapse to the next. Information theory provides a means to
measure the information contained in such signals and to characterize
the communication channel (4). Part of the difficulty of analyzing
neural signals are the idiosyncratic sources of variability, but applying
information theoretic principles to the nervous system has allowed
us to understand and analyze neural coding and organization (5–7)
as well as cognitive perception (8–10). Here, we provide evidence that
the motions resulting from neuromotor signals can be understood as
information-carrying signals themselves and that information mea-
sures can also be used to analyze the movement and predict features
of neuromotor control.

Although signal analysis has been broadly applied to study the
transfer of information from stimuli to cortex, principles from in-
formation theory are rarely used to model the output of motor
commands. Instead, theories of motor coordination are often devel-
oped on the basis of constrained optimization, often substituting the
behavioral goal with the minimization of a measured quantity such
as error or energy (11, 12). These are useful metrics both because they
allow us to reason about the underlying principles of neuromotor
control and because many well-developed engineering techniques
are based on minimizing these quantities (13–16). Therefore, one can
characterize human-like walking as an energy-minimizing trajectory
(12) or reaching in the upper limb as a minimum jerk movement
(17, 18). When generic measures fail to capture important features of
motion, they are supplemented with qualitative analysis (e.g., similarity
to normal patterns ofmotion) (12) and task-specificmeasures of success
such as work area (19), movement speed (20), or a combination of
velocity threshold, aim, and maximum reach (21).

One of the reasons task-specific or outcome-basedmeasures capture
the qualitative description of the behavioral goal is that they are in-
dependent of the motion strategy, whereas energy or error is typically
explicitly dependent on a specific desired trajectory. For instance, one
might travel forward and then to the right to reach a target, or one
could follow a diagonal path, resulting in the same level of task success
using two disparate strategies. Even if the average of the two paths was
used as a reference, the resulting desired trajectorymay not convey the
task goal, and the variance and other statistics of the set of motion
strategies are not part of a typical control architecture. Stereotypical
motion—such as reaching, self-feeding, and walking—has substantial
variation between equally qualitatively successful trials, both within and
between individuals. Because of the inherent stochasticity in neuromotor
commands and the resulting task executions, we use a distribution f(x) :
ℝn↦ℝ over a state spaceX to define a task goal. We assess a motion by
asking how much information about fðxÞ∈ℝ; x∈X is encoded in the
movement xðtÞ : ℝ↦X , where x(0) = x0 and xðtÞ∈X for some time t.

There are a few natural ways to describe a task statistically rather
than by specifying a goal state or a goal trajectory. If there is a particular
goal state s, one can represent this as a Dirac delta function d(x − s). Or,
if the task definition is a consequence of measuring many instances of
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task execution, the collection of observations will form a distribution
f(x) in the domain X . As more demonstrations of the target-reaching
task are added to the set of observations, the collective time spent at the
goal state generates a higher peak at the state s, asymptotically
approaching a delta function at the goal state. To quantify information
content in a motion, one needs to measure a trajectory xðtÞ∈X that
describes movement of the body. If x(t) were itself a distribution across
all of X , one could use the Kullback-Leibler divergence, DKL (22), to
measure howwell x(t) communicates information about f(x).However,
x(t) is a trajectory, taking on only one state at each time t, and as a con-
sequence, DKL between x(t) and f(x) will be generally infinite.

To compare a trajectory x(t) with a distribution f(x) while avoiding
the underlying problems with using DKL, we used ergodicity—which
relates the temporal behavior of a signal to a distribution. A trajectory
x(t) is ergodic with respect to a distribution f(x) if, for every neighbor-
hoodN⊂X, the amount of time x(t) spends inN is proportional to the
measure of N provided by f(x). On a long enough time horizon,
measuring a perfectly ergodic x(t) gives a complete description of
f(x). However, because a trajectory can only visit every neighborhood
 by guest on N
ovem

ber 13, 2020
http://robotics.sciencem

ag.org/
d from

 

ofX on an infinite time horizon, a finite
time horizon x(t) cannot be perfectly
ergodic. Instead, we asked that x(t) be
maximally ergodic, by introducing a
metric on ergodicity, so that the time-
averaged statistics of x(t) best capture
the statistics of f(x) in a specified time
horizon T, subject to system dynamics
and constraints. Ergodicity can be mea-
sured by several metrics (23, 24); here,
we used the spectral approach (25),
which characterizes ergodicity by com-
paring spatial Fourier coefficients of
f(x) with coefficients of x(t)—giving us
the distance from ergodicity. In Fig. 1,
we show two hypothetical cases of the
trajectory of the center of mass during
walking compared with an idealized
reference trajectory based on typical gait
patterns. The high-quality execution is
not temporally alignedwith the reference
andmay represent faster or slowerwalk-
ing than the reference. Nonetheless, the
time-averaged statistics of the trajectory
match that of the reference distribution.
The low-quality execution provides an
example of what one might obtain from
an impaired individual with poor bal-
ance ormotor coordination. The ergodic
metric used here gives us the distance
fromergodicity, such that trajectories that
are highly ergodic, like the high-quality
execution in Fig. 1, have a lower ergo-
dicity than those that are less ergodic.

We used this informationmeasure to
analyze two cases of assisted motion—
where the lack of assistance may be
interpreted as a deficit relative to the
assisted condition. First, we looked at
data gathered during supported reaching
Fitzsimons et al., Sci. Robot. 4, eaav6079 (2019) 17 April 2019
from a participant with an abnormal tendency to flex the elbow when
lifting the arm at the shoulder. We see in Fig. 2 that the ergodic metric
distinguished between different levels of arm weight support—although
error did not—even for a single participant.

Motivated by this individual result, we collected data from (healthy)
human participants robotically assisted with a dynamic inversion and
balance task to see whether the presence of assistance and learning on
the part of the participants can be detected. In both cases, the outcome is
affirmative. On the basis of our task-specific measures, there is a clear
distinction between the assisted and unassisted conditions. Analysis of
the error measure does not show such a distinction based on assistance
but does detect a training effect based on the significantly lower root
mean square (RMS) error of the training group in their second session
comparedwith the control. The ergodicmeasure detected both the pres-
ence of assistance and the training effect. These results suggest thatmea-
sures of the information encoded by amovement can be used to predict
the presence of assistance and that such measures capture outcomes
that would not otherwise be captured in task-specific performance
measures.
A High Quality Execution B Low Quality Execution
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Fig. 1. Illustration of motion signals and statistics using the center of mass in walking. For the task of walking on a
line, we can distinguish between two hypothetical cases—a high-quality execution (A) and a low-quality execution
(B) by tracking the vertical and mediolateral displacement of the person’s center of mass. These displacements can be
characterized as motion signals (C) with a reference or desired trajectory that is based on typical gait patterns. As a
trajectory, the high-quality execution does not exactly track the reference trajectory in time, but when we look at the
Fourier reconstruction of the trajectory statistics (D), we can see that the high-quality execution is very similar to the
reference distribution. In contrast, the low-quality execution has spatial statistics that are very different from the reference
distribution.
2 of 10

http://robotics.sciencemag.org/


SC I ENCE ROBOT I C S | R E S EARCH ART I C L E

D
ow

nloade
RESULTS
To evaluate training effect and presence of assistance, participants were
tested in both assistance and no-assistance modes. Each participant
completed two sessions, about 1 week apart. Upon enrollment in the
study, each participant was placed into one of three groups. If placed
in the training group (n=20), the participant completed the first session
with assistance and received no assistance in the second session. If a
participant was placed in the nontraining group (n = 20), they per-
formed the task without assistance in the first session and used the
assistive interface in the second session. Last, a control group (n= 13)
performed the task without assistance in both first and second
sessions. Participants were tasked with inverting and balancing a
virtual cart-pendulum system as shown in Fig. 3 [often studied in
nonlinear control (26, 27)]. For the purposes of calculating ergodicity,
a delta function d(x − s) at the goal state s was used.

In this experiment, we implemented a form of assistance that can
convert pure noise input into a successful task execution by comparing
the noise input with that of an optimal controller (28). The assistance
acts as a filter similar to that described in (28) and (29), such that if user
Fitzsimons et al., Sci. Robot. 4, eaav6079 (2019) 17 April 2019
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inputs agree with the optimal controller, user input is not modified
by the interface. When user inputs do not agree, the robot physically
rejects the input, providing feedback but not guidance. The user
input—acceleration of the cart as measured at the robot end effector—
is either accepted or rejected at each instant on the basis of whether
the input vector is in the same direction as the input prescribed by an
optimal controller. Note that the objective of the optimal controller is to
minimize the error between the system trajectory and the goal state at
the unstable equilibrium, s ¼ ðq; _qÞ ¼ ð0; 0Þ. The input vector cal-
culated by the optimal controller is never implemented. It is only used
as a filtering criterion. The input is completely rejected—replacing the
user input with a zero vector—when user inputs do not agree with the
optimal controller. If the participant is a perfect actor, the assistance is
completely transparent. Details of the assistance algorithm can be found
in Materials and Methods.

Assistance adds task information
Several task-specific performance measures were recorded, includ-
ing success rate, balance time, and time to success. The training
and nontraining group data were aggregated to evaluate the effect
of assistance on the 40 participants in a counterbalanced fashion.
Paired two-sample t tests on these task-specific measures of the par-
ticipants with and without assistance showed that the participants
improved with the addition of assistance. The assisted trials had a
higher success rate (P < 0.001, t(39) = 12.314), spentmore cumulative
time at the goal state (P < 0.001, t(1199) = 26.519), and reached the
goal state more quickly (P < 0.001, t(1199) = 17.202). The trajectories
generated in the assisted condition were also more ergodic with re-
spect to the task distribution than those without assistance when the
paired two-sample t test was performed (P < 0.001, t(1199) = 11.261).
However, the RMS error of the trajectory from the goal state did not
show a significant difference (P = 0.094, t(1199) = 1.674) between the
assisted and unassisted conditions. This suggests that the assistance
improved task-specific performance metrics and increased the task
information encoded by themovement. A two-factor (assistance and
block) analysis of variance also showed that the assistance had a sig-
nificant effect in terms of the task-specific measures and the ergodic
metric. However, the analysis of the RMS error revealed no signifi-
cant effects.When we looked at the spatial statistics (see Fig. 4) of the
 13, 2020
assisted trials versus the unassisted trials,
we saw that the assisted trials spent a
larger proportion of time near the origin
where the target distributionwas centered.

Learning involves increasing
task information
The effect of training was assessed by com-
paring the week 2 session of the trained
group with the week 2 session of the con-
trol group (see Fig. 5). Although perform-
ance in the task-specific measures did not
improve with training, the ergodicity and
error of the trained group were significantly
better than those of the control group. A
two-sample t test was performed on the
task-specific performance measures and
found no difference between trained and
untrained groups in terms of their success
rate [P = 0.4280, t(31) = −0.8032], time
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Fig. 2. Target-reaching trials of a stroke participant. A patient with stroke was
asked to reach to one of three targets (EE, elbow extension; SF, shoulder flexion;
RF, reach forward) in different areas of their workspace. The ergodic measure (left)
provides clear distinctions between the level of full-arm support and partial-arm
or no-arm support in the case of both EE and RF (as indicated by the circled data).
The error measure (right) provides little distinction between the fully supported
case and the partially supported. Each marker represents a trial from the same
individual.
Fig. 3. Experimental system. Participants directly controlled the cart position xc and indirectly controlled the angle
q and angular velocity _q of the cart-pendulum system (left). The goal state used to calculate the RMS error was
ðq; _qÞ ¼ ð0; 0Þ, and the distribution used as the task definition for the information measure was a Dirac delta function
at ðq; _qÞ ¼ ð0; 0Þ (right).
3 of 10

http://robotics.sciencemag.org/


SC I ENCE ROBOT I C S | R E S EARCH ART I C L E

 by guest on N
ovem

ber 13, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

spent balanced [P = 0.1687, t(988) = 1.378], and time to success [P =
0.1935, t(988) = 1.301]. The two-sample t test of the RMS error
showed a significant difference between trained and control groups
[P = 0.0499, t(988) = −1.963], but the effect size was small (d =
0.127). The t test of ergodicity [P = 2.266 × 10−4, t(988) = −3.701] also
detected the difference, but with a larger effect size (d = 0.237). A two-
factor (training group and block) analysis of variance also showed that
Fitzsimons et al., Sci. Robot. 4, eaav6079 (2019) 17 April 2019
block and the interaction between training group and block had a sig-
nificant effect in terms of the RMS error and the ergodic metric. How-
ever, the task-specific measures revealed no significant effects. This
indicates that the training effect was not captured by task-specific
measures but was captured by error and ergodicity. Although the
training effect can be detected with error, the information measure
detected it with a larger effect size.
Fig. 4. Assistance adds information. The histogram of unassisted trajectories (left) has its highest density at q = ±p, which is the farthest point from the goal state. The rest
of the distribution is diffuse over the state space. Although the histogram of the assisted trajectories (right) also has a high density at q = ±p, the distribution is not as diffuse
as that of the unassisted trajectories. There are bands of high density spreading outward from the goal state ðq; _qÞ ¼ ð0; 0Þ. The spatial statistics of the assisted trajectories
are more similar to the reference distribution in Fig. 3, because there is a high density at and around the goal state. This suggests that assistance increased the task
information encoded in the movement. This outcome is captured by measuring the ergodicity of the trajectories in each group with respect to the reference distribution.
Themean ergodicity of the unassisted trajectories is 0.739, and themean ergodicity with assistance is 0.631. This lower number indicates that less information is lost in the
assisted motion than the unassisted motion.
Fig. 5. Learning increases information. The histogram of week 2 control trajectories (left) has its highest density at q = ±p, which is the farthest angle from the goal
state at ðq; _qÞ ¼ ð0; 0Þ. The control trajectories also spend time near the goal state, but to a lesser extent. The histogram of trained trajectories (right) also has high
density near q = ±p, but there are large bands of high density in the region −1.5 ≤ q ≤ 1.5 and�4≤ _q≤4. These bands make the statistics of the trained group closer to
the spatial statistics of the reference distribution in Fig. 3. We quantified how well these statistics match that of the reference by calculating the ergodicity. The trained
trajectories are on average more ergodic (m = 0.705) than the controls (m = 0.751). In other words, the trained motions communicate information about the task goal
more effectively than the control motions.
4 of 10

http://robotics.sciencemag.org/


SC I ENCE ROBOT I C S | R E S EARCH ART I C L E

http://robotics.
D

ow
nloaded from

 

DISCUSSION
Our results suggest that the information encoded in bodily motion
provides a language for describing changes due to assistance and
learning in physical human-robot interaction. Using this framework,
we found that an informationmeasurewas a better predictor of changes
in deficit compared with error, even when the robotic assistance was
based on that error metric. In addition, we showed that when the
error-based assistance was used to supplement training, task-specific
measures failed to detect the effect of training, and the ergodic measure
demonstrated a stronger statistical power to detect the performance
changes due to training. When we consider the body as an information
channel and bodily motion as an information-carrying signal, we could
interpret these results in away that captured phenomena thatwould not
otherwise be captured by task-specific measures or standard measures
such as error. This analysismay provide valuable insight into changes in
performance over the course of training or therapy.

When we examined the effect of robotic assistance in reducing the
deficit of a stroke participant, we found that simply reducing the deficit
by arm weight support increased the information encoded in their
reaching motions to multiple targets. Specifically, their motions were
more ergodic with respect to a Dirac delta distribution at the target po-
sition. We found that task-oriented assistance using an error-based op-
timal control also reduced the information lost in task executions. These
decreases in information loss indicate that the information channel (the
human-robot pair) itself was improved by the addition of both forms of
assistance.
Fitzsimons et al., Sci. Robot. 4, eaav6079 (2019) 17 April 2019
Task-specific measures also reflected differences in task executions
due to deficit. Clinically, task-specific measures are frequently used to
assess deficit (30–33), often motivated by the fact that more standard
and generalizable measures, such as error and energy, fail to predict
the presence of deficit. As a consequence, deficit must be often assessed
in very narrow experimental conditions where the measures are appli-
cable. These task-specific measures have several negative consequences.
First, they do not translate to othermotions (e.g., an assessment strategy
for reaching cannot be applied to interpretation of walking or even self-
feeding). Moreover, task-specific measures do not admit the same level
of principled interpretation as measures such as state error (which
capturesmotor control accuracy) and energy (which capturesmetabolic
efficiency). Measuring the task information encoded by a movement
provides an information-theoretic framework for interpreting motion—
in a principled manner like error or energy—by capturing the qualitative
description of task while not implicitly prescribing a specific strategy for
task completion.

Task-specific measures are able to capture qualitative task success
because theymeasure events at the goal state or task outcomes—making
them independent of the strategy. In contrast, measurement of error is
typically explicitly dependent on a reference trajectory, so error mea-
sures and error-based assistance prescribe a specific strategy for task
completion. Measures on information are still independent of the
strategy chosen but can be expected to detect that a strategy is encoded
in themovement even if themovement does not result in task success. A
movement with a focused strategy should have higher task information
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Fig. 6. Comparison of the control and trained group performance progress over training. The statistical comparisons of the trained and control groups excluded
the data from the first session (gray) to avoid including the effects of the assistance algorithm itself. For the task-specific measures (top row), there was no difference
between the two groups, and block had no significant effect on performance. For the error and ergodic metrics, block has a significant effect, especially in the control
group. Under both measures, the control group performance was worse at the beginning of the second session (the first two blocks in white) but by the end of the
session performed as well as the trained group. Ergodicity enables one to see the difference between the treated and untreated group, and both error and ergodicity
allow one to see learning as a function of block. Error bars indicate standard error.
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than amovementwithout a focused strategy. In the case of the swing-up
and inversion problem, the assistive algorithm forces participants to use
an error-reducing strategy, increasing the task information in the as-
sisted movement as seen in Fig. 4. Participants attempting to maintain
the error-reducing strategy after training with the assistance explain the
training effect that we saw in the error and ergodic metrics (see Fig. 6).
However, the error-based assistance used in this experimentmay not be
the most effective strategy to improve task outcomes such as balance
Fitzsimons et al., Sci. Robot. 4, eaav6079 (2019) 17 April 2019
time and success rate. Assistive algorithms that provide too much
guidance—thereby reducing errors during training—fail to result in im-
proved training because both error (34) and kinematic variability (35)
are critical to learning. In addition, the feedback may lead users to learn
the wrong task (36). In this case, participants may have learned to re-
duce the cumulative errorwithout learning the true task goal, whichwas
to reach the unstable equilibrium regardless of the RMS error incurred
before or after reaching that state.
Fig. 7. The new arm coordination training 3D. Device provides haptic feedback in three dimensions to simulate a specified inertial model via admittance control. A
force-torque sensor at the end effector provides input to the admittance control loop. During this experiment, high-stiffness virtual springs were used to restrict user
motion to a straight line corresponding to the path of the cart in the virtual display (bottom left). The display provided real-time visual state feedback about the cart-
pendulum system that the user was attempting to invert.
Table 1. Paired two-sample t tests comparing unassisted and assisted
trials. Hypothesis testing was performed in R (43) by subtracting the
unassisted condition from the assisted condition, showing improvement
due to assistance in all five measures. Both the task-specific measures
and ergodicity—measured as the distance from ergodicity—capture the
effect of the assistance. Note that the df for success rate is 39 because
there is only one rate per participant.
No
assistance
n = 20
Assistance
n = 20
Measure
 m
 SD
 m
 SD
 t
 df
 P
Success
rate
 0.3475
 0.163
 0.792
 0.182
 12.314
 39
 5.162 × 10−15
Balance
time
 0.191
 0.411
 1.661
 1.913
 26.519
 1199
 2.541 × 10−122
Time to
success
 25.333
 7.648
 20.068
 7.824
 −17.202
 1199
 1.926 × 10−59
Error
 0.632
 0.062
 0.626
 0.102
 −1.674
 1199
 9.433 × 10−2
Ergodicity
 0.739
 0.191
 0.631
 0.283
 −11.261
 1199
 4.954 × 10−28
Table 2. Two-sample t tests of week 2 control trials and week 2
trained trials. Hypothesis testing was performed in R (43) by comparing
the means of the control group with the means of the trained group. Error
and ergodicity—measured as the distance from ergodicity—were the
only measures that revealed a significant improvement in the mean be-
tween the trained group and the control group. Note that the df for
success rate is 31 because there is only one rate per participant.
Control
n = 13
After
training
n = 20
Measure
 m
 SD
 m
 SD
 t
 df
 P
Success
rate
 0.438
 0.211
 0.380
 0.200
 −0.8032
 31
 0.4280
Balance
time
 0.295
 0.570
 0.243
 0.502
 1.378
 988
 0.1687
Time to
success
 24.319
 7.844
 24.981
 7.794
 1.301
 988
 0.1935
Error
 0.629
 0.061
 0.621
 0.058
 −1.963
 988
 0.0499
Ergodicity
 0.751
 0.207
 0.705
 0.177
 −3.701
 988
 2.266 × 10−4
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Whereas this work demonstrates that the ergodic measure is use-
ful for assessing human motion post hoc, it may also be used as a
powerful tool for modulating haptic and kinesthetic feedback during
training. There is already some evidence that providing feedback
based on relevant measures of movement quality is more effective
that trajectory error–based assistance (37). Using the ergodic metric,
one can generate distribution-based representations of tasks from sets of
imperfect demonstrations—providing an alternative means for robots
to “learn” from humans by applying information maximizing tech-
niques (38, 39). Rather than learning a policy or task objective, one
could generate a reference distribution from recordings of human task
executions and use the distribution as the task objective for a deter-
ministic information–based model-predictive controller, allowing the
human-robot pair to accomplish the task under different initial con-
ditions and under various system constraints. Furthermore, providing
assistance based on the ergodic measure allows us to build joint-human
robot control policies that directly encode the natural variability of hu-
manmotion, such that we do not need to restrict assistance to enforce a
particular goal trajectory or make inferences about which movement
parameters are relevant to the task.

These results suggest that the ergodicmeasure can augment error or
energy measures in the study of biomechanical motion—providing
fine-grained insight on the progression of robot-aided training and
therapy. Specifically, this study supports the idea that ergodicity is a
principle of motion for interpreting and predicting animal movement
with potential implications for the design of effective feedback and
training strategies.
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MATERIALS AND METHODS
Quantifying ergodicity
One metric for quantifying ergodicity of the trajectory is the sum e of
the weighted square distance between Fourier coefficients of the
distribution fk and the coefficients of the spatial Fourier transform of
the trajectory, ck

e ¼ ∑
K

k1¼0
… ∑

K

kn¼0
Lk ck � fkj j2 ð1Þ

where, at each time, the state isn-dimensional and there areK+ 1 coef-
ficients along each dimension (25). The subscript k in Eq. 1 is a multi-
index over the coefficients of the multidimensional Fourier transform.
The coefficient Lk = (1 + ‖k‖2)−s where s ¼ nþ1

2 places larger weights
on lower frequency information, creating a Sobolev norm (25). Using
Fourier basis functions of the form

FkðxÞ ¼ 1
hk
∏
n

i¼1
cos

kip
Li

xi

� �
ð2Þ

where hk is a normalizing factor (25) and Li is a measure of the
length of the dimension, we can compute the coefficients of a spa-
tial distribution or time-averaged trajectory using Eqs. 3 and 4,
respectively

fk ¼ ∫
X
fðxÞFkðxÞdx ð3Þ
Fitzsimons et al., Sci. Robot. 4, eaav6079 (2019) 17 April 2019
ck ¼ 1
T
∫
T

0 FkðxðtÞÞdt ð4Þ

The x(t) defined here represents the set of ergodic states xe(t),
or states that are relevant to the task, which may be a subset of the
full set of dynamic states x(t) ∈ ℝn (i.e., ne ≤ n). For example, for
the cart-pendulum inversion task, the full dynamic state vector is
xðtÞ ¼ ½qðtÞ; _qðtÞ; xcartðtÞ; _xcartðtÞ�, but the relevant ergodic states
for the inversion task are xeðtÞ ¼ ½qðtÞ; _qðtÞ�. For the comparisons
made in this paper, RMS error was also calculated on the basis of
the ergodic states only.

New arm coordination training device
The new arm coordination training 3D (NACT3D) device (Fig. 7) is a
powerful haptic admittance-controlled robot that can be used to render
virtual objects, forces, or perturbations in three degrees of freedom. This
device is similar to that described in (40) and (41), is used to quantify
upper limbmotor impairments, and provides ameans tomodulate limb
weight support during reaching. While in use, the participant is seated
in a Biodex chair connected to the base of the NACT3D with their arm
secured in a forearm-wrist-hand orthosis. The NACT3D is capable of
exerting forces at this interaction point between the user and the robot
in the x, y, and z directions only. The impedance control is updated at
1000 Hz. The NACT3D can move its end effector within a workspace
defined both by its design limits (a radius of about 0.6 m around the
participant’s shoulder in the half plane in front of the participant’s chest)
and limits set by the investigators. The orthosis can rotate passively, but
no torque can be exerted by the robot. At the point where the orthosis is
mounted, a force-torque sensor measures the user input, which is fed
back to the admittance controller. The peak push-pull force that can be
exerted by the device of the device at the end effector is about 4.7 kN.
The forcemeasured at the end effector is sent to a host computer for use
in the assistance algorithm to compare the user input with the control
policy and perform the filter update at a rate of 60 Hz.

Assistance algorithm
The assistance algorithm used in these experiments was Maxwell’s
Demon Algorithm (MDA). The MDA algorithm was proposed in
(28) for noise-driven nonlinear control based on the hypothesis that
noisy inputs can be a rich source of control authority if filtered in a
task-specific way. The MDA filter was implemented by combining a
controller and a filter into a single computational unit that cancels
noise samples not driving the system to the desired control direction.
A modified version of the MDA algorithm that allows filtering of
user input was implemented in (29). Using this modified version,
an interface for the NACT3Dwas developed and implemented using
sequential action control (42) as the nominal controller.

The filter, described in algorithm1,works by evaluating the user input
vector uuser and computing the value of a nominal controller uc based on
the current state of the system. Calculating the inner product be-
tween the user input and the nominal controller establishes whether
the two vectors are in the same half space (e.g., 〈uc, uuser〉 > 0). One
can further specify that the user input vectormust lie within a cone near
the nominal control vector by specifying a maximum angle g between
uuser and uc. If the user input lies in the same half space as uc and within
g radians of uc, then the filter does nothing. If the user input is not in the
same half space as uc or not within g radians of uc, then the input is
rejected. In the case of the NACT3D, a force equal and opposite to
7 of 10
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the force of the user is exerted at the end effector. This results in the
interface being transparent when user inputs are accepted or velocity
being held constant when inputs are rejected.
Algorithm 1. MDA approach for filtering user input
Initialize current time t0, sampling time ts, final time tf, input satura-
tion usat, and angle tolerance g.

while t0 < tf do
Get user input uuser
Compute nominal controller value uc
Calculate inner product 〈uc, uuser〉
Calculate angle f between uc and uuser
if 〈uc, uuser〉 > 0 and |f| ≤ g then

if then |uuser| < usat
Use uuser as current input, ucurr = uuser

else
Apply saturated user input ucurr = usat

end if
else

Completely “reject” uuser (ucurr = 0)
end if
Apply ucurr for t ∈ [t0, t0 + ts]
t0 = t0 + ts

end while

Experimental protocol and analysis
Fifty-three participants (17 males and 36 females) consented to par-
ticipate in this study. This study protocol was approved by the North-
western University Institutional Review Board, and all the participants
signed an informed consent form. At the beginning of each session, the
system and task were demonstrated to the participant using a video of a
sample task completion. Participants were instructed to attempt to
swing the pendulumup to the upward unstable equilibriumandbalance
there for as long as possible. Participants were instructed to continue to
try to do this until a time of 30 s was over even if they succeeded at
balancing near the equilibrium more than once. The full 30 s was used
in calculation of all metrics, and the trajectory statistics were averaged
over this time horizon. In each session, 30 trials were completed with
short breaks upon request of the participant. To assess the effect of
assistance, 40 participants were tested in two sessions (1 week apart),
one session with assistance and one session without assistance. The
order of the sessionswas randomized to account for any learning effects.
Paired two-sample t test was performed to evaluate differences between
the session with assistance and sessions without assistance. Another
group of 13 participants performed twounassisted sessions 1week apart
to establish a baseline for learning from unassisted practice. A two-
sample t test was evaluated to test the difference in means between
the second session of the control group and the second session of the
group of 20 participants who used assistance in their first session.
Statistical results
The results of the comparison of the unassisted and assisted trials using
two-sample t tests are summarized in Table 1. These tests pair samples
from each participant according to the order in which they were per-
formed in each session—accounting for the variance between partici-
pants. Additional analysis of the effect of assistance as participants
progressed through trials was performed by grouping individual trials
into blocks of five trials, such that the effect of both the assistance and
the trials could be assessed from independent and interaction effects.

The time spent at the balance position during each trial was analyzed
with a 2 (assistance/no assistance) × 12 (blocks of five trials) mixed-
Fitzsimons et al., Sci. Robot. 4, eaav6079 (2019) 17 April 2019
design analysis of variance (ANOVA), which showed a significantmain
effect of the assistance mode [F(1, 418) = 388.87, MSE = 1296.5, P < 2 ×
10−16, Cohen’s f= 0.76]. Themain effect of the blockwas also significant
[F(11, 418) = 2.196, MSE = 7.3, P = 0.0139, Cohen’s f = 0.19]. The as-
sistance and block interaction effect was not significant [F(10, 418) =
1.266, MSE = 4.2, P = 0.25, Cohen’s f = 0.14].

The time to success was also computed for each trial. This measure
was analyzed with the same 2 × 12 mixed-design ANOVA and showed
only a significant main effect of assistance mode [F(1, 418) = 224.922,
MSE = 16629, P < 2 × 10−16, Cohen’s f = 0.44]. The main effect of block
was not significant [F(11, 418) = 0.809, MSE = 60, P = 0.63, Cohen’s f =
0.09]. The assistance and block interaction effect alsowas not significant
[F(10, 418) = 0.709, MSE = 52, P = 0.72, Cohen’s f = 0.08].

The mixed-design ANOVA was also used to analyze the RMS error
of the relevant states ðq; _qÞ over each 30-s trial and found no significant
effects from any factor. Themain effect of assistance was not significant
[F(1, 418) = 1.367, MSE = 0.018, P = 0.24, Cohen’s f = 0.05]. The main
effect of block was also not significant [F(11, 418) = 1.399, MSE =
0.019, P = 0.17, Cohen’s f = 0.18]. The interaction of block and as-
sistance was not significant either [F(10, 418) = 0.609, MSE = 0.008,
P = 0.806, Cohen’s f = 0.11].

The ergodic metric was computed over each 30-s trial using the
relevant states ðq; _qÞ and was analyzed using the 2 × 12 mixed-
design ANOVA. The only significant main effect was assistance mode
[F(1, 418) = 62.51, MSE = 6.90, P = 2.38 × 10−14, Cohen’s f = 0.35].
Block was not a significant main effect [F(11, 418) = 1.31, MSE =
0.144, P = 0.218, Cohen’s f = 0.17], and the interaction of assistance
and block was not significant [F(10, 418) = 0.691, MSE = 0.076, P =
0.73, Cohen’s f = 0.12]. These ANOVAs show that the task-specific
measures and the ergodic metric detected the effect of assistance with
a moderate effect size, whereas error did not distinguish between the
assisted and unassisted conditions over the course of each session.

The comparison of the trained and control group using two-
sample t tests is summarized in Table 2. Unlike the assisted and un-
assisted trials, the groups in these tests are independent, and therefore,
the samples are not paired. The progress of the two groups over the sec-
ond session (Fig. 6) was analyzed further by performing mixed-design
ANOVAs on the training group (between participants) and block
(within participants).

The balance time of the control group and the trained group in the
second session was analyzed with a 2 (training groups) × 6 (blocks)
mixed-design ANOVA, which showed no significant main effects or
interaction effects. The main effect of training group was not sig-
nificant [F(1, 31) = 1.202, MSE = 1.25, P = 0.28, Cohen’s f = 0.08].
The main effect of block also was not significant [F(5, 155) = 2.018,
MSE = 0.44, P = 0.079, Cohen’s f = 0.11] nor was the interaction of
training and block significant [F(5, 155) = 1.05, MSE = 0.23, P = 0.39,
Cohen’s f = 0.08].

The mixed-design 2 × 6 ANOVA design was also applied to the
time to success, and the main effect of training group was not sig-
nificant [F(1, 31) = 0.334, MSE = 103.4, P = 0.567, Cohen’s f = 0.05].
The main effect of block was not significant either [F(5, 155) = 1.34,
MSE = 66.32, P = 0.25, Cohen’s f = 0.09]. The interaction effect of
block and training group was also not significant [F(5, 155) = 1.34,
MSE = 66.50, P = 0.25, Cohen’s f = 0.09].

The samemixed-designANOVAwas used to analyze theRMS error
in each trial. Themain effect of block was significant [F(5, 155) = 4.336,
MSE = 0.011, P = 0.001, Cohen’s f = 0.19], but the main effect of train-
ing was not significant [F(1, 31) = 0.76, MSE = 0.035, P = 0.39,
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Cohen’s f = 0.15]. The interaction effect of training group and block
also was not significant [F(5, 155) = 1.61, MSE = 0.004, P = 0.16,
Cohen’s f = 0.12].

The analysis of the ergodic metric using the mixed-design ANOVA
revealed a significantmain effect of block [F(5, 155) = 2.88,MSE = 0.08,
P = 0.0163, Cohen’s f = 0.15] and a significant interaction effect of block
and training group [F(5, 155) = 2.33, MSE = 0.06, P = 0.045, Cohen’s
f = 0.14]. The main effect of training was not significant [F(1, 31) =
1.056, MSE = 0.49, P = 0.312, Cohen’s f = 0.17].

These ANOVAs demonstrate that the task-specific measures were
not sensitive to either the improvement made by the participants
throughout the second session or the benefit of the feedback provided
to the trained group in the first session. The errormeasure indicated that
users performed better over the course of the second session. In Fig. 6,
the control group performed worse at the beginning of the second
session than it did at the end of the first session, and their performance
increased in terms of error over the course of the session. The trained
group also improved moderately during the second session. The
ANOVA of the ergodic metric was also able to detect the significant
improvement during the second session by the control group as well
as the interaction effect of group and training. This interaction is a result
of the trained group performing better at the beginning of the second
session and maintaining that performance, whereas the control group
eventually reached the same level of performance.
 b
botics.sciencem
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SUPPLEMENTARY MATERIALS
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Data file S1. Performance metrics calculated for each trial and participant session.
Data file S2. An example of trajectories collected from a single participant in their first session
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