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Ergodic Imitation with Corrections: Learning from Implicit

Information in Human Feedback
Junru Pang, Quentin Anderson-Watson, Kathleen Fitzsimons

Abstract—As the prevalence of collaborative robots increases,
physical interactions between humans and robots are inevitable—
presenting an opportunity for robots to not only maintain safe
working parameters with humans but also learn from these
interactions. To develop adaptive robots, we first aim to analyze
human responses to different errors through a study in which
users are asked to correct any errors that the robot makes in
various tasks. With this characterization of corrections, we can
treat physical human-robot interactions (pHRI) as informative
instead of ignoring physical interactions or leaving robots to
return to the originally planned behaviors when interactions end.
We incorporate physical corrections into existing Learning from
Demonstration (LfD) frameworks, which allow robots to learn
new skills by observing human demonstrations. We demonstrate
that learning from physical interactions can improve task-
specific performance metrics. The results reveal that including
information about the behavior being corrected in the update
improves task performance significantly compared to adding
corrected trajectories alone. In a user study with an optimal
control-based LfD framework, we also find that users are able to
provide less feedback to the robot after each interaction update to
the robot’s behavior. Utilizing corrections could enable advanced
LfD techniques to be integrated into commercial applications
for collaborative robots by enabling end-users to customize the
robot’s behavior through intuitive interactions rather than by
modifying the behavior in software.

Index Terms—Robotics, Human-Robot-Interaction, Adaptive
System

I. INTRODUCTION

Perhaps the most common strategy to handle physical
human-robot interaction (pHRI) is through designing con-
trollers that avoid contact with humans during collaboration [1]
or implementing some form of impedance control—treating
human-robot interaction as a disturbance. When that interac-
tion is intentional, robots could utilize those ‘disturbances’ to
adapt their behavior in dynamic and unpredictable environ-
ments. Human guidance allows robots to improve decision-
making processes, correct mistakes, and align actions with
user-desired behavior. Utilizing the knowledge from intuitive
feedback through physical corrections can reduce barriers to
translating existing research on Learning from Demonstration
(LfD) into commercial robot applications. In such frameworks,
a human partner can provide information on task goals or
preferences that are difficult to capture in a small number of
demonstrations. Human feedback could enable the autonomy
to continually develop a more comprehensive definition of
the desired behavior as long as that feedback is interpreted
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correctly by the autonomy. This may reduce robot mistakes
and improve human-robot trust [2], [3].

Human feedback can be explicit expressions of human
preferences as in binary queries [4], [5], performance ranking
[6], and corrections [7]. These active learning approaches treat
users as an oracle that provides a reward signal indicating
successful task completion. In performance ranking, a user
scores trajectories that the IRL framework uses to maximize
the expected discounted sum of rewards [8]. Binary queries
can train a classifier that determines task success such that
the classifier can be used as a reward function for sparse
reinforcement learning [4]. Physical interactions and ranking
information have also been combined to infer the human’s
preferred trajectory features through a learned model of the
human’s scoring function [7].

Information can also be inferred online from user cor-
rections captured through a teleoperation interface [9], [10].
Physical corrections to an impedance-controlled robot arm [7],
[11], [12] can be combined with IOC frameworks, such that
the corrections are extrapolated to apply a deformation to the
rest of the trajectory. Alternatively, long-term performance in
the task can be improved by modifying the control policy [13]
or the parameterized task definition [14], [15].

Though some recent work has aimed to use interventions
indirectly to train a residual policy [16] or to generate synthetic
interventions [17], most methods for learning from physical
corrections treat the interaction as a source of explicit trajec-
tory adjustment as in [18]. In the present work, we aim to
understand what implicit information may be contained in the
physical corrections and assess how this can be leveraged to
improve robot learning from interactions. First, we collect data
on human corrections to a set of pre-defined errors with and
without online imitation learning in a user study. We analyze
the interaction time, interaction force, and the delay between
the start of the error and the user intervention. We observed
a significant delay between the onset of the error and the
user’s response. In contrast to [11]–[15], these results suggest
that we could leverage the implicit and explicit information
encoded in the pHRI to update a control objective. Therefore,
we propose a framework in which human corrections not
only cause the deformation on the rest of the trajectory but
also indicate that the previously planned robot trajectory is a
demonstration of “what not to do”. We adopted the imitation
learning framework developed in [19] to change the robot’s
ongoing behavior and future iterations. The timing of human
corrections and relative interaction forces observed in the
study of pre-defined errors was used to select parameters for
the interaction update. The experimental performance of the
interaction-based learning framework is presented on a 7-DOF
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Fig. 1: Learning from Interaction Framework: While the robot is executing
the learned task, its sensors monitor external forces for user interaction. When
the external force is detected, a deformed trajectory is calculated to update
the current task execution and update the learned task definition.

robot arm. The result demonstrates that online updates to the
task definition reduced the amount of time and interaction
force that humans spend correcting the robot’s performance.
Finally, we explored multiple ways to incorporate implicit
information. The algorithm is tested under different assump-
tions about the implicit information. The results show that
including implicit information from the originally planned
robot trajectory could improve robot performance more than
explicit corrections alone. In addition, utilizing correction
requires fewer demonstrations than offline LfD for similar
performance outcomes. The contributions of this work are 1) a
user study characterizing human corrections to robot errors, 2)
a framework for incorporating implicit information from the
corrections into an LfD method such that updates are made
online, and 3) an evaluation of the LfD framework under
various interpretations of the implicit information contained
in the corrections.

II. RELATED WORK

Compared to manually programming a time series of desired
joint angles, LfD has been used to reduce the need for end-
users to be able to write complex and tedious programs
since the 1980s [20]. Demonstration data can be collected via
observations [21], kinesthetic teaching [22], or teleoperation
[23], [24]. This data is used to learn a reference task definition
for optimal control methods [25], [26], or a control policy
can be learned directly through reinforcement learning (RL)
methods [27]–[29]. For both Inverse Optimal Control (IOC)
and RL-based methods, the demonstrations provided often
must be expert-provided or represent a near-optimal execution
of the task [30]–[32].

Probabilistic methods can account for small errors in
demonstrations with small-scale noise in the probabilistic
representation [33]–[37]. To further relax these constraints
on demonstration data, several recent LfD approaches enable
robots to learn from sub-optimal demonstrations [38], [39].
Failed demonstrations [40]–[43] and demonstrations of what
not to do [19] can also yield control policies that successfully
replicate the intended task. In the present study, we aim to
understand how humans correct errors such that information
from these corrections can update the control policies online.

A. Ergodic Imitation

We use Ergodic Imitation [19] to control the robot so that
its end-effector trajectories reflect the demonstrated task. By
integrating suboptimal and failed demonstrations, ergodic imi-
tation allows robots to learn robust behaviors, even in scenarios
where demonstrations contain errors or imperfections. This
flexibility reduces the need for expert-level demonstrations,
enabling the system to handle potentially noisy human inputs.

Ergodic imitation is an IOC method in which tasks are
defined through spatial distributions in a state-based feature
space, and ergodic control [44], [45] is used to minimize
the difference between the temporal statistics of the robot
trajectory and the spatial distribution defining the task. This
difference, ergodicity, can be measured using the spectral
approach [46], which characterizes ergodicity by comparing
spatial Fourier coefficients of the trajectory x(t) to coefficients
of a reference distribution ϕ(x)—giving us the distance from
ergodicity.

The ergodicity of the robot trajectory is quantified by the
sum ε of the weighted square distance between the Fourier
coefficients of the distribution ϕk and the coefficients of the
spatial Fourier transform of the trajectory ck:

ck =
1

T

∫ T

0

Fk(x(t))dt, (1)

where Fk(x) is the Fourier basis function. The spatial statistics
of each demonstration trajectory d are represented by the
coefficients computed in Eq. 1, and the learned distribution is
defined by coefficients ϕk, which are computed by a weighted
average:

ϕk =

m∑
j=1

wjck,j , (2)

where the weighting factor wj normalizes each demonstration
based on either the length of the trajectory or the relative
quality of the demonstration. Therefore, demonstrations of
what not to do (negative demonstrations) are combined with
a negative weight—wj < 0 in Eq. 2.

B. Trajectory Deformation

Trajectory deformation can be used to modify a planned
robot trajectory beyond the deviation resulting from an in-
stantaneous physical interaction between the human and an
impedance-controlled robot. The deformation of the trajectory
is computed independently along each axis [11]. The original
trajectory segment, Sd, is represented as a vector, with entries
describing the position of the system at regular time intervals
between the contact time, tc, and the end of the prediction
window, tp. The deformed trajectory, S∗

d , is computed by

S∗
d = Sd + µDfh(tc), (3)

where fh is the force applied by the human and µ ∈ [0, 1]
is a parameter that changes the sensitivity of the trajectory
deformation to the force magnitude. When µ is relatively
small, the user needs to input a larger force to achieve smaller
deformations. For the larger value of µ, a smaller force will
cause larger trajectory deformations. The unitless term, D, can
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be used to tune the deformed trajectory. For instance, when
D is computed as:

D = (ATA)−1, (4)

where A is a finite differencing matrix, it ensures that the
resulting trajectory is minimum jerk [47].

In the present work, Sd is the segment of the originally
planned trajectory, xec, that is recomputed when a human-
applied force fh exceeds a measurement threshold. We se-
lected a moderate value, µ = 0.5, for the sensitivity of
the deformation calculation to the applied force and use the
finite difference matrix A from [47] that results in deformed
trajectories with the minimum jerk.

III. METHODS

In Experiment 1, we investigate how humans choose to
correct robot errors through physical interactions by analyzing
the timing and forces applied during corrections to pre-defined
trajectory errors in 3 tasks performed by a 7-DOF robot
arm. We hypothesized that collision or safety errors would
lead participants to interact with the robot earlier in the
deviation from the desired trajectory, with high forces and
longer interaction times compared to errors in which the robot
deviated slightly from the nominal trajectory. Using the results
of Experiment 1, we evaluate different ways to incorporate
the implicit and explicit information in these corrections into
an online learning from interaction algorithm in Experiment
2. Below, we first describe the online learning algorithm in
section III-A, followed by the experimental design and data
analysis of the user study (Experiment 1). This is followed by
an explanation of the alternative update methods developed
as a result of Experiment 1 that are used in Experiment
2, which evaluates the impact of positive demonstrations—
deformed trajectories—and demonstrations of what not to
do—the current robot trajectory and the trajectory that had
been planned prior to the correction.

A. Incorporating Corrections into Ergodic Imitation

Ergodic imitation learning is implemented as in [19], where
an initial definition of the task is learned from a set of
demonstrations D with positive/negative labels from an offline
training phase. For the MPC method used to generate the end-
effector trajectory, we define the dynamic model of the form:

ẋ = f(x, u) = g(x) + h(x)u (5)

where x ∈ Rn is the state of the agent and u ∈ Rm is the
control input. The system must be control-affine to use the
non-linear MPC method in [48]. We define the task objective:

J = qε+

∫ T

0

1

2
u(t)Ru(t)dt, (6)

where q is a weight on the ergodic metric, and R is a weight
on the control effort. The ergodic metric ε is a measure of the
trajectory’s distance from ergodicity:

ε =
∑K

k1=0
. . .

∑K

kn=0
Λk|ck − ϕk|2, (7)

where the coefficient Λk = 1/((1 + ||k||2)s), s = (n+ 1)/2.
This quantifies how closely the robot trajectory x(t) matches
the spatial statistics of the target distribution ϕ(x) by com-
puting a weighted sum of the squared difference between
the spatial Fourier coefficients of the target distribution, ϕk

(Eq. 2), and the coefficients of the time-averaged trajectory,
ck, computed using Eq. 1.

During trajectory execution, user inputs above a threshold
force were used to compute a trajectory segment using Eq. 3.
This trajectory segment and portions of the originally planned
trajectory are used to recalculate the Fourier coefficients of the
target distribution, ϕk. The spatial Fourier coefficients of the
deformed trajectory are computed using Eq. 1. The reference
distribution, ϕk is recomputed as the weighted average of the
previous demonstrations and the additional demonstration data
with a positive weight assigned to the deformed trajectory and
negative weight assigned to the originally planned trajectory
according to Eq. 2. This incremental update ensures that the
modified distribution reflects the applied corrections. The MPC
then re-optimizes the controls u(t) to track a new trajectory
that minimizes the objective in Eq. 6. The full algorithm is
outlined in Algorithm 1, where tc denotes the start time of
each interaction, tp is a fixed offset after tc, and fthreshold is
predefined.

B. Experiment 1: User Study on Impact of Error Types

To evaluate human corrective actions, we used three tasks:
a peg-in-hole task, pouring a cup with obstacle avoidance,
and drawing & erasing on a whiteboard as shown in Fig. 2.

Algorithm 1 Ergodic Imitation with Online Corrections

Input: initial time t0, initial state x0, set of demonstra-
tions D = {d1, ..., dm} with positive/negative labels
{e1, ..., em}, final time tf
Define: impedance parameters, ergodic cost weight q,
highest order of coefficients K, control weight R, search
domain bounds {L1, ...Ln}, sampling time ts, time hori-
zon T , Interaction force threshold fthreshold

Output: ergodic trajectory xec → X
2: Initialize: nominal control unom, i = 0

Generate distribution D(s) from demonstration set D.
4: Calculate ϕk from distribution D(s)

while ti < tf do
6: Compute u∗

i using MPC
Apply u∗

i for t ∈ [ti, ti + ts] to get x∀t ∈ [ti, ti + ts].
8: if fh > fthreshold then

Calculate S∗
d using Equation 3

10: xec =

{
xec if t < tc or t > tp,

S∗
d if tc ≤ t ≤ tp

Assigning weights wj based on methods described
in section III-C

12: Update ϕk using equation 2: ϕk =
∑m

j=1 wjck,j
Define ti+1 = ti + ts, xi+1 = x(ti+1)

14: end if
i← i+ 1

16: end while
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Fig. 2: Pre-defined Error Tasks. (A)Peg-in-hole task (B) Pour task: Kuka
delivers the cup and pours the foam balls into the assigned location without
collision ; (C) Draw & Erase task: Kuka draws a square on the whiteboard;
(D) Draw & Erase task: Kuka erases the square drawn before.

Within the 3 tasks, we defined four types of errors: no error,
substandard, task failure, and safety. In no-error trajectories,
the robot successfully completed the task as quickly as pos-
sible. Substandard errors occur when the robot completes the
task, but with a less direct and often longer trajectory than the
no-error example. During task failure errors, the robot does
not complete the task at all. Safety errors included trajectories
where the robot collides with an object in the workspace or
enters the space near the participant. We collect data on the
magnitude of forces used to correct erroneous behaviors and
the amount of time users spend providing corrections. We
hypothesized that the type of error would be a significant factor
in the forces applied by the participant.

1) Tasks Descriptions: In the peg-in-hole task, the robot
inserts a round peg into the round hole on a test fixture. The
test fixture has three holes of different shapes and sizes. This
task had two task-failure and two safety errors. In the no-error
trajectory, the robot inserted the peg directly into the circular
hole in the peg box. In contrast, for the two task failure errors,
the robot inserted the peg into the wrong hole, or the robot
slightly missed the hole. For the two safety errors, the peg
hit the side of the box, or the peg moved out towards the
participant before inserting itself into the box.

In the pouring task, the robot arm delivers a cup and pours
foam balls into a basket without colliding with an obstacle.
The task had four predefined mistakes: one substandard error,
one task failure error, and two safety errors. The substandard
trajectory had the robot moving over an obstacle before pour-
ing the contents of the cup into a bowl with an exaggerated
motion to avoid the obstacle. In the task failure trajectory, the
robot moved over the obstacle but poured the cup early. The
two safety errors involve the robot colliding with the obstacle
and the basket itself.

In the draw & erase task, the robot arm draws a square and
then erases it on the same whiteboard. The end effector was
designed to allow the robot to easily switch between drawing
and erasing by simply rotating the end effector. This task had
three task failure trajectories. For the no-error trajectory, the

robot draws a square and then erases the square immediately.
For the three task failure trajectories, the robot draws a
diamond instead of a square before erasing, draws the correct
square, but does not erase the square completely. Finally, the
robot attempts to draw and erase the square; however, the end-
effector is not close enough to make contact with the board.

2) User Study Protocol & Analysis: 8 right-handed partic-
ipants (3 male, 5 female) ranging in age from 18-35 were
recruited to participate in this study. Before interacting with
the robot, the researchers explained the types of tasks and
errors that the participant could expect to see. Participants
were given the opportunity to interact with the robot during
practice tasks before data collection began. The participants
familiarized themselves with how the robot moved and how
much force could be applied to the robot to change its motion.
We employ two pHRI strategies in this user study: a baseline
impedance controller and ergodic imitation with interaction-
based updates. For ergodic imitation with interaction-based
updates, the robot would react to human corrections by re-
planning a new trajectory during execution.

We employed the impedance control mode of
iiwa_stack ROS package [49] in both strategies. The
stiffness values (x,y,z) were set as [300, 300, 300] N/m, and
the angular stiffness values are set as [500, 500, 500] Nm/rad.
The damping ratio for the Cartesian impedance control for
all degrees of freedom is set as 0.7. The impedance control
parameters remain constant during task execution.

During data collection, the participant would be introduced
to a task and observe and correct each error instance 8
times for a total of 40 trials for the peg-in-hole and the
pouring task, and a total of 32 trials for the draw & erase
task. Prior to starting the trials for each task, the correct
trajectory was shown to the participants one time. To prevent
participants from anticipating the error, the order in which the
error types were presented was randomized. The participant
would complete all trials for one task before moving on to
the next task. The order of tasks was counterbalanced across
all participants. Participants were given the option to either
physically correct the robot’s movement or hit the emergency
stop button.

Experimental data collected during the trials consisted of
the Cartesian position of the robot’s end-effector and its joint
torques as a function of time. The total interaction time
for each trial was calculated by summing the time in the
trial during which the robot’s trajectory deviated from the
programmed trajectory. The average interaction force was
calculated by measuring the mean joint torque applied to the
robot during the deviations from the programmed trajectory. A
one-factor repeated measures ANOVA was used to analyze the
effect of error type on the interaction time and the interaction
force for each task.

C. Incorporating User Study Results into Algorithm Design
The results of Experiment 1 showed a significant delay

between the start of a deviation from the normative trajectory
and the user intervention (see Sec. IV-A)—inspiring the design
of Experiment 2 to understand the impact of including the
original robot behavior as a negative demonstration.
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Fig. 3: (A) PositiveDeformedBehvior: The original LfD trajectory xec (black) is altered by human input force fh according to Eq. 3 such that the robot
follows the deformed trajectory xd (blue dash) which is used as the positive demonstration; (B) PreviousNegBehavior: xd is divided at t = tc into the negative
demonstration trajectory before the correction(red dash) and positive demonstration occurring after the correction(blue dash). (C) PredictedNegBehavior: The
negative demonstration is taken as the trajectory before the correction and the planned trajectory xec from tc to tc + tprediction

The method used to incorporate corrected trajectories as
demonstrations depends on how one interprets the implicit
information in the interaction. While the deformed trajectory is
an explicitly positive demonstration (Fig. 3), the implicit infor-
mation could be contained in the robot’s executed performance
(Fig. 3B) or the robot’s original planned behavior(Fig. 3C).

We explore three methods for incorporating corrective feed-
back into the learned task definition. When detecting user input
force, fh, at tc, the deformed trajectory xd is calculated based
on Eq. 3, as shown in Fig. 3. The deformed trajectory is always
included as a positive demonstration in the task definition
as described in section III-C (Fig. 3A). In addition, we can
incorporate the robot behavior preceding the correction as a
negative demonstration, as shown in Fig. 3B. If one assumes
the user makes some prediction about how the robot’s behavior
would have evolved without their intervention, the trajectory
that was planned for immediately after the correction is also
a negative demonstration (Fig. 3C).
Deformed trajectory used as positive demonstration: The
deformed trajectory is computed with Eq. 3 and is used to
update the desired trajectory xd of the impedance controller.
The deformed trajectory is also added to the task distribution
learned during the offline training phase ϕk by assigning it
the positive weight wj in the summation given in Eq. 2. This
method is referred to as PositiveDeformedBehavior in the
following sections.
Deformed trajectory used as a positive demonstration
with preceding behavior as a negative demonstration:
In Fig. 3B, the robot trajectory is split at tc. As with the
method of incorporating the deformed trajectory as a positive
demonstration, we assume that the deformed trajectory S∗

d is
positive. Because the correction implies that some aspect of
the robot’s task execution must be fixed, the robot behavior
prior to tc is incorporated into the learned task distribution as
a negative demonstration wj < 0. The underlying assumption
is that the user’s correction is reactive to observed negative
behavior. This method is referred to as PreviousNegBehavior
in the following sections.
Deformed trajectory used as a positive demonstration and
predicted negative demonstrations: User corrections may be
a reaction to observed negative behavior, but they may also be
a result of a user’s anticipation of negative behavior. There-
fore, we also incorporated the presumed positive trajectory
deformation with the previous behavior and a portion of the
originally planned trajectory for some time tprediction into the
future as a negative demonstration. This method is referred to

Fig. 4: Experimental Tasks. (A) Delivery task: Kuka is responsible for
delivering the cup from point A to point B; (B) Cleaning task: Kuka is
responsible for cleaning the writing on the whiteboard.

as PredictedNegBehavior in the following sections.

D. Experiment 2: Study on Performance of Explicit and Im-
plicit Update Methods

We implement ergodic imitation with online corrections
on a Kuka LBR iiwa operating in impedance control mode
as shown in Fig. 1. In the impedance control mode, stiff-
ness values for (x, y, z) are set as [1500,100,100] N/m. The
angular stiffness values are set as [300, 300, 300] Nm/rad.
The damping ratio for the Cartesian impedance control for
all degrees of freedom is set as 0.7. The parameters of the
impedance control mode remain constant during the training
and execution phases. To communicate with Kuka and analyze
the motion data, including Cartesian position and wrench, we
used the iiwa_stack ROS package [49]. In the experiments,
there are two phases: training and learning. After an offline
training period in which up to 5 kinesthetic demonstrations
were provided by the researchers, the robot attempts to execute
the tasks based on the provided demonstrations. During the
online learning period, physical corrections were applied to the
6th joint of the Kuka up to 4 times, depending on the ratio
being tested. For the delivery task, these corrections altered
the angle of the cup, while the corrections in the erasing task
increased the coverage of the whiteboard. The experiments
used the following hyperparameters: R = 0.01 · I3×3, q =
500,K = 10, T = 1.0, ts = 1/60, fthreshold = 4.5N , and
tprediction = 1.5, which were chosen empirically.

We evaluate the performance of the three methods for
incorporating corrective action in two tasks—transporting a
filled cup (Fig. 4A) and cleaning a whiteboard (Fig. 4B).
We show how changing the ratio of offline demonstrations
and corrective actions affects task performance by analyzing
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task-specific metrics that capture task success. We tested the
following offline:collection ratios: 5:0, 1:4, 3:2, and 4:1. The
average performance is computed from 20 task executions
occurring after all demonstration data had been incorporated
into the learned task definition.

1) Task Descriptions: We simplified the pouring task and
the draw and erase task from experiment 1 to a cup delivery
task and an erase-only task, so that we could assess the per-
formance of one primary metric in each task. In the delivery
task, the robot arm learns to deliver a cup to users as shown
in Fig. 4A, which takes 8 seconds. In addition to reaching the
target location, the robot must keep the cup upright during the
task execution. Corrections are provided when the cup spills
the material contained in it. Therefore, the main performance
metric that we evaluate is the angle of the cup, where 0 radians
is the upright position. The angle of the robot end effector
(e.g., the angle of the cup) is used in the ergodic metric.

In the cleaning task, the robot arm is trained to clean
the whiteboard shown in Fig. 4B, which takes 19 seconds.
During executions, users provide corrections when areas of
the board have not received sufficient coverage. We evaluate
the performance of the learned trajectories by comparing the
pixel values of an image of the whiteboard before and after
cleaning. The percentage of the original image that retains
a high pixel value is reported as the uncleaned area. The
Cartesian coordinates of the end-effector, (x,y,z), are used in
the ergodic metric.

IV. RESULTS

A. Statistical Results of Error Types

User interaction time across the three tasks—Peg Task, Pour
Task, and Draw Task is shown in Fig. 5. Three one-factor,
repeated measures ANOVA were performed using R [50], to

assess the impact of error types in each of the tasks. The
main effect of error types was statistically significant in the
peg task (p = 0.0202, F = 2.9636), but the error type was
not a significant factor on the interaction time in the pour
(p = 0.6650, F = 0.5970) and draw tasks (p = 0.0649, F =
2.4452). To further evaluate the effect of error type, a post-
hoc pair-wise t-test was performed for the peg task. In the peg
task, there was a statistically significant difference between
the safety error 1 and the task failure error 2, and between
the safety error 1 and the safety error 2. Overall, these
results suggest that the task type and error type may influence
differences in interaction time. Interestingly, there were no
significant differences between the ‘no error’ error type and
the other error types. In other words, participants spend a
similar amount of time correcting trajectories with error as
with trajectories without error.

Three one-factor, repeated measures ANOVA were also
performed on the interaction forces used to correct the pre-
defined errors in each of the three tasks. The main effect
of error types was statistically significant in each task —
Peg task: p = 1.86 × 10−106, F = 347.8440; Pour task:
p = 1.73 × 10−80, F = 185.0599; and Draw task: p =
3.82 × 10−25, F = 51.3442.). To further evaluate the effect
of error type, a pair-wise t-test was performed for each task.
In the peg task, there was a significant difference in all
pairwise comparisons of error types. In the pour task, there
were significant differences between most error types except
for the comparison between No Error and Task Failure Error.
In the draw task, there were significant differences between
each pair of error types except for the comparison between
Task Failure Error 1 and Task Failure Error 3. Overall, we
observe that the interaction force varies significantly across
different error types, indicating that users exert different levels
of corrective force depending on the nature of the error. It

Fig. 5: User Interaction Time on predefined errors: Peg Task has the lowest average interaction time across all conditions. The safety-related errors in the
peg and pour tasks exhibit higher interaction time, which suggests that safety errors require more prolonged engagement. The Draw Task demonstrates the
longest interaction time among the three tasks. (*:p < 0.05;**:p < 0.005;***:p < 0.0001)

Fig. 6: User Interaction Force on predefined errors: The elevated force levels of the Pour Task (Safety Error 1) indicate that users prefer spending more
effort to correct safety-related errors in this task. In contrast, the Peg Task has the lowest interaction forces since the task is relatively easy to correct and
finish. (*:p < 0.05;**:p < 0.005;***:p < 0.0001)
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Fig. 7: Combination of Delay and Total Error Time Comparison for Peg Task, Pour Task, and Draw Task: We analyzed the temporal delay between the
start of errors and the initiation of user interventions. Results revealed that safety-related errors tend to have a shorter delay before user intervention compared
to task failures.

Fig. 8: In the case of transporting the cup, each correction improves the task definition such that the robot’s task execution more accurately reflects the goal
of keeping the cup upright.
reveals that user interaction force is an informative signal
reflecting the relative need for trajectory modification. This
magnitude is leveraged in the trajectory deformation step of
the online update. However, as seen in Fig. 6, users may still
provide strong corrections to ‘no error’ trajectories, sometimes
even more than errors that would result in task failure.

We computed the delay between the onset of the trajectory
error and the user interaction. Fig. 7 shows the results of the
delay within the total error time for different error types of
each task. We also present the time from the start of the ‘no
error’ trajectory to the first interaction, which was about three
seconds for each task. Typically, users responded within 2-
4 seconds of error onset, indicating that a negative behavior
occurs prior to user intervention. This motivated the use of the
previous negative behavior as demonstrations of what not to
do in Experiment 2.

B. Sample Response with Online Corrections

Fig. 8 shows the sample response of the cup angle (the
seventh robot joint angle) during the delivery task. The blue
dashed line represents the target angle, which is 0 degrees.
The seventh joint angle of the robot is expected to remain
close to this target angle to prevent spilling. When trained
with five offline demonstrations, the angle stayed around 10
degrees and increased to over 20 degrees when the task
was completed. With three offline demonstrations, the robot
started at approximately 20 degrees. After two corrections,
the joint angle gradually approached the target angle but
remained above 10 degrees for a period. When trained with
one offline demonstration, the robot began at an even larger
angle. Following three corrections, the joint angle gradually
approached the target angle and remained stable around it for
some time.

Fig. 9 illustrates the sample response of the trajectories and
task definitions during the cleaning task. Regions of the task

distribution where more time is spent have a higher color
intensity than regions where less time is spent. The robot was
expected to clean as many areas as possible. When trained with
five offline demonstrations, the task definition covered fewer
areas. However, as more user corrections were incorporated,
the task distribution became more diffuse, resulting in an
increase in the cleaned area. This improvement is also evident
from the robot’s trajectories.

Fig. 9: This example illustrates how the learned task distribution evolves with
different correction ratios. As corrections are applied, the task distribution
becomes more diffuse, resulting in increased area coverage with online
corrections versus offline demonstrations. The end effector trajectories in
the y–z plane are shown on the left, and the corresponding learned task
distributions are shown on the right.

C. Human Interaction Time is Decreased with Online Updates

Fig. 10 shows the results of the interaction time of each trial.
In general, participants interacted less with the robot in the first
2 trials, resulting in lower interaction times, perhaps because
they were still gaining familiarity with the robot by hands-off
observation. In subsequent trials, interaction time increased
somewhat. Overall, enabling online updates via corrections
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Fig. 10: Interaction Time Comparison: We explored the meaning of robots learning from physical human-robot interactions (pHRI) and compared it to
learning from impedance. Results revealed that learning from pHRI significantly reduced participant interaction time across all experimental tasks. The user
interaction time also decreased gradually with the increased number of trials.

reduced the interaction time from trial 3 to trial 8 in most tasks
and error types, except the peg-in-hole tasks, where interaction
times were relatively flat. All trials with online updates were
lower than the average interaction time observed in the study
of predefined errors without online updates.

D. Online Learning Frameworks Improve Performance of Cup
Delivery

Fig. 11: Comparison of cup angle from 2 control strategies: offline LfD (black
line) and continual learning (bars) with different ratios of trained demon-
strations. The average performance is computed from 20 task executions
completed after all offline and online demonstrations were incorporated into
the learned task definition.

The angle error for ergodic imitation using only offline
demonstrations was over 20 degrees after inputting all demon-
strations. This is plotted as the horizontal black line in Fig. 11,
where the grey shading represents the standard error for this
baseline learning method. When the task was learned from a
mix of offline demonstrations and online corrections instead of
offline demonstrations alone, the angle error decreased signif-
icantly. The addition of the deformed trajectory as a positive
demonstration (PositiveDeformedBehavior) with 4 corrections
and one offline demonstration reduced the angle error by
more than 30% compared to offline demonstrations alone. The
performance of PositiveDeformedBehavior improves with an
increased number of corrections. Specifically, the cup angle
trained with four corrections and one offline demonstration de-
creased by approximately 40% compared to the angle trained
with four offline demonstrations and only one correction. The
number of corrections does not significantly impact Previ-
ousNegBehavior and PredictedNegBehavior. Overall, methods
that utilize information about the negative aspects of the orig-
inal trajectory perform better than the method using only the

deformed trajectory as a positive demonstration. By combining
positive (explicit information) with negative (implicit infor-
mation) aspects of behavior, performance improves by nearly
50% compared to the offline approach and 20% compared to
using the deformed trajectory as a positive demonstration only,
when four corrections are provided.

E. Cleaned area is increased with Online Learning Frame-
works

Fig. 12: Uncleaned area percentage is calculated from the original writing
area divided by the uncleaned area. The highest percentage scale is 1. The
average performance is computed from 20 task executions completed after
all offline and online demonstrations were incorporated into the learned task
definition.

In the cleaning task, a smaller percentage of uncleaned
areas indicates better robot performance. Shown in Fig. 12,
the performance of the offline method trained with five
demonstrations is used as the baseline, with the grey shading
representing the standard error for this baseline. Generally,
the robot arm with all online update control strategies shows
improved performance as more online corrections are provided
during the learning phase. Methods incorporating negative
aspects perform slightly better than those using only the
deformed trajectory as a positive demonstration. Among the
online updates via corrections methods, PredictedNegBehav-
ior outperforms the others. Specifically, the uncleaned area
percentage for PredictedNegBehavior, trained with four online
corrections, decreased by approximately 50% compared to the
offline baseline.

V. DISCUSSION AND CONCLUSIONS

The aim of the present study was to characterize human
corrections by analyzing responses to a set of pre-defined
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errors with varying levels of impact on task performance and
safety. Our primary metrics were the total interaction time
and interaction force. Differences in error types were not
good predictors of the interaction time, but there were clear
differences in the average interaction force depending on the
error type. The differences in interaction force could be at
least partially explained by the fact that more severe errors
would require stronger forces to overcome the impedance
controller that was tracking the erroneous trajectory. Yet, if
this were the only explanation, we would expect the no error
condition to have the lowest forces and lowest interaction
times. Surprisingly, this was not the case. Users spent similar
amounts of time providing corrections to ‘no error’ trajectories
as they did to trajectories that posed a risk of collision or
trajectories that failed at the task. The order in which these
trajectories were presented was randomized, so it is possible
that participants simply began anticipating errors even if there
were none. In other words, the users did not trust the robot to
make no errors, so they intervened more often. This highlights
the need for responsive and adaptive controls on the robot, not
only to improve performance but also to reduce the burden on
users to monitor and correct robot partners.

In addition to the differences in the total time and effort
used to correct the robot, we evaluated the timing of these
corrections relative to the initial deviation of the erroneous tra-
jectories from the nominal trajectory. We observed a consistent
delay between the onset of the error and the user correction.
While the correction provides the explicit demonstration of
the user’s preferred behavior, this delay suggests that there
is implicit information about what not to do in the trajectory
that was executed immediately before the correction. In the
second experiment presented, multiple ways of interpreting
human feedback are explored to incrementally update the task
definition of an imitation learning framework. The deformed
trajectories reflect the user intention and are incorporated
as demonstrations to refine learned task distributions. User
intention is interpreted into two components: “Negative”, rep-
resenting undesired behavior, which corresponds to the robot’s
planned motion before correction, and “Positive”, represent-
ing the intended behavior, which corresponds to the robot’s
planned motion after correction with the deformed region. This
method of incorporating corrections is implemented on a 7-
DOF robot arm in two tasks—one requiring high accuracy
and one requiring diffuse coverage. We demonstrate that
incorporating these corrections can enhance robot learning by
efficiently updating the task definitions.

Notably, the information contained in negative demonstra-
tions helps robots achieve better performance with fewer user
corrections. In the experiment comparing continual learning
methods with offline LfD, the results show that continual
learning frameworks can help robots update the original task
definitions based on the information from pHRI, where Previ-
ousNegBehavior and PredictedNegBehavior are more effective
than PositiveDeformedBehavior alone. When performing a
complicated task, the continual learning frameworks’ per-
formance shows a greater dependency on the information
contained in the original task definition and corrected task
definition compared to the simple task. The deformed trajec-

tory contains explicit information in the form of a positive
demonstration. Implicit information is contained in the mis-
takes of the originally planned behavior and can be considered
a negative demonstration or an example of what not to do.
The impact of these corrections is limited in simple tasks like
peg-in-hole, but provides larger performance gains in more
complex tasks. This may be because it is difficult to capture
all the relevant features in a small number of demonstrations
of more complex tasks. In the user study evaluating three
tasks with twelve errors in total, enabling online updates
via corrections improved the robot’s performance to match
human preferences with fewer interventions. Additionally, it
decreased interaction time as the number of trials increased.
The results from the interaction time experiments demonstrate
that the robot’s ability to perform online updates using in-
formation encoded in pHRI can gradually reduce the user’s
burden of correcting ongoing mistakes.

In the current work, we empirically demonstrate the benefit
of incorporating implicit information from human corrections.
However, future work could apply an information-theoretic
approach to quantify the implicit information extracted from
these interactions—potentially reducing the number of hyper-
parameters that need to be selected by the programmer. One
might expect that, with a less uniform participant pool than in
the present study, the force threshold, deformation sensitivity,
and response time might vary, especially in disparate settings
like home or manufacturing. Another limitation of the present
work is that while the robot can generalize over a variety
of conditions of the same task, it cannot generalize across
tasks. One could apply this method to other probabilistic task
definitions, such as ProMPs, where one would have to use
some heuristic to determine how to apply corrective feedback
to an individual motion primitive in a library of learned
behaviors. This would enable the proposed methods to be used
in multi-step manipulation tasks or implemented into more
complex robotics systems, e.g., humanoid or quadruped robots.

In this paper, we presented a user study of responses to
robot errors and proposed a method for learning from pHRI to
enhance the robot’s in-task online update ability, which has the
potential to enable real-world robot designs to be more reliable
and practical. We use both implicit and explicit information
from user physical interactions. We interpreted the explicit
information as the robot’s deformed trajectory and implicit
information as the robot’s previous behavior—learning from
“what not to do”. In the user study, user interaction time is
reduced after interaction-based updates. Compared with the
offline LfD approach, the performance is gradually improved
as more corrections are implemented, especially when utilizing
the information about the negative aspects of the original
behavior.
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