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Advances in exoskeletons and robot arms have given us increasing opportunities for providing physical support and meaningful feedback

in training and rehabilitation settings. However, the chosen control strategies must support motor learning and provide mathematical task

definitions that are actionable for the actuation. Typical robot control architectures rely on measuring error from a reference trajectory. In

physical human-robot interaction, this leads to low engagement, invariant practice, and few errors, which are not conducive to motor

learning. A reliance on reference trajectories means that the task definition is both over-specified—requiring specific timings not critical

to task success—and lacking information about normal variability. In this article, we examine a way to define tasks and close the loop

using an ergodic measure that quantifies how much information about a task is encoded in the human-robot motion. This measure can

capture the natural variability that exists in typical human motion—enabling therapy based on scientific principles of motor learning. We

implement an ergodic hybrid shared controller(HSC) on a robotic arm as well as an error-based controller—virtual fixtures—in a timed

drawing task. In a study of 24 participants, we compare ergodic HSC with virtual fixtures and find that ergodic HSC leads to improved

training outcomes.
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1 INTRODUCTION

Designing robotic assistance frameworks presents a set of challenges that are unique to HRI and highly dependent on the

task, environment, capabilities of the user, and the ultimate goal of the interaction. Robotic interfaces can act as guides

in remote teleoperation or robotic surgery—providing haptic feedback and constraints to users—or shared control may

enable robots to act as partners providing assistance that compensates for a user’s deficit due to disability or high cognitive

load[21, 41]. While the goal of teleoperation and assistive robotics is successful task completion, rehabilitation robots

must target learning—sometimes at the expense of achieving task success. Robotics have great potential for enhancing

training and rehabilitation because of their ability to support many task repetitions and to quantify the performance of the
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trainee. However, the automation cannot simply track the same series of joint states over and over—measuring the user’s

error. Instead, the automation must take actions based on a quantitative task definition and the specific needs of the user.

Motor learning literature and past studies of control strategies for training provides us with several requirements

that robots must meet in order to promote learning. Most important in these is a need for active involvement by the

user. When a patient is suffering from severe deficit, such as immediately after a stroke, there is some benefit to passive

movement. However, in the long term, simply moving a person through the motions of a task leads to slacking [20].

Training and therapy is most effective when training is intense and patients are actively involved in the exercises [31].

User engagement can be promoted using game-like graphic interfaces for task-oriented training [48, 55] and by matching

the control strategy to the relative difficulty of the task [30, 37]. This suggests that typical robot control frameworks

tracking a particular joint trajectory are ill-suited for robot-mediated training.

Instead, impedance/admittance control, virtual fixtures, and potential fields are used to ‘assist-as-needed’ or to challenge

high skill users through error augmentation, kinematic variability, and random perturbations [5, 34, 44]. Although hardware

advances have made robots more versatile and made it possible for us to autonomously support an almost unlimited

number of meaningful tasks, most prior work in the upper extremity has focused on path-following tasks, where the goal

is to minimize tracking error or follow a normative velocity profile. This is because a fundamental problem in physical

human-robot interaction is how we should define the desired behavior [34, 44]. There are two main aspects to consider.

One must specify the low level task that the actuators and encoders manage—e.g., a desired trajectory, velocity profile, or

torque specification—and at a higher level one must select from one of many possible strategies to achieve the desired

behavior. While the simplest solution may be to minimize the error between the robot and a recorded trajectory based on

expert input or average behaviors, this brings up issues of time-dependence and enforcing a particular solution to a task

that may have infinitely many ’good enough’ solutions. This approach also neglects a fundamental principle of motor

learning—that errors and variability actually enhance learning [53].

We assert that interfaces must enable flexibility in task solutions and provide task-based feedback rather than error-

based. Stereotypical movements—such as reaching, cleaning, self-feeding, and walking—have substantial variation

between equally qualitatively successful trials, both within and between individuals. This variability is necessary for

motor learning, so our control objectives need to maintain a task-level view of performance. This perspective is achieved

by monitoring the spatial statistics of movement rather than relying on error or task-specific performance heuristics—

providing assistance based on a global measure as opposed to local interactions. A measure comparing the temporal

statistics of trajectories to a spatial distribution defining a task—ergodicity—enables one to identify changes due to

reduction of a person’s existing deficit or training with robotic assistance when other common measures failed to capture

at least one of these effects [14]. Furthermore, one can easily use a set of demonstrations to learn a task definition with

imitation learning [24].

In this paper, we present a novel method for providing corrective feedback based on a statistical task definition that can

be generalized to a broad set of tasks. Rather than asking the robot to help the user minimize their tracking error, the

robot intervenes to increase the information about the task that is encoded in the motion. This is implemented by using an

ergodic measure to close the loop on our hybrid approach that switches between full user autonomy and full rejection of

user inputs. In a user study, we implement ergodic hybrid shared control (HSC) on an impedance control robot (Figure 1)

and empirically compare training with the ergodic HSC to an assist-as-needed path controller.

The paper is organized as follows: First, in Section 2, we provide background information on control strategies used

in robotic training applications and highlight two control design features that greatly impact the performance of these

training strategies. This is followed by a discussion of our prior work and the ergodic HSC algorithm in Section 3. Results
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Fig. 1. Participants were seated in front of a display showing the reference image and corresponding square in which they
were to copy the drawing. They held onto a handle rigidly fixed to the end-effector of the Sawyer robot. The display provided
visual feedback on what they had drawn so far and the amount of time remaining. A physical card with the given reference
image was displayed throughout each trial. Study participants were asked to reproduce the images on the left as quickly as
possible. They were given a maximum of 10 seconds per drawing.

of applying the algorithm to simulated noise input are given in Section 4. The experimental protocol and design can be

found in Section 5 followed by the results in Section 6. Finally, we provide a discussion of the results in Section 7.

2 RELATED WORK

2.1 Control Strategies for Training

Control strategies that are designed to support learning can be classified as either passive, corrective, resistive, or some

combination thereof. Many early rehabilitation robots provided passive assistance to users by replaying trajectories from

healthy humans or experts [6, 8, 38, 51]. This type of guidance is beneficial for healthy participants when the relative

difficulty is high and for patients in an acute stage of recovery. As participants learn or relearn motor skills, the task should

be performed under shared control [20, 40]. In an effort to avoid user passivity, Assist-As-Needed (AAN) control was

introduced and is now widely used. This can be done by adjusting the relative contributions of the robot and the human

based on user performance, or it can be corrective—using virtual fixtures to reject user commands when they deviated

from the planned trajectory or enter restricted regions [5]. AAN is usually achieved through impedance/admittance

control [44]. Resistive strategies have also been implemented by adjusting the impedance gains on the control or specifying

a novel potential field where the forces push users away from the desired trajectory or path, but results are mixed. Users

benefit from resistive strategies when the relative difficulty is low, whereas users with significant deficits or low skill

need assistance [30, 37]. Our approach is not to provide assistance or resistance based on some desired velocity profile,

but rather to accept or reject user actions based on global knowledge of the task goal. This results in an interface that

inherently adapts to user performance and skill [15], while other strategies require two separate strategies to select the

appropriate level of controller intervention and the lower level modulation of controller responses to individual user

actions.

2.2 Adaptation

To promote user engagement and participation during training, controllers must modulate assistance based on user

performance or the relative difficulty of the task. The most common solution is trial-by-trial adaptation based on tracking
Manuscript submitted to ACM
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error [4, 56]. In some cases, mean velocity [19, 25], anticipated deviation based on model of participant impairment [42],

or other performance heuristics are used. This adaptation has led to moderately better therapeutic outcomes compared

to conventional therapy [45]. Yet, the rate at which control parameters are adapted may affect the skill retention [30].

Regardless of the adaptive scheme or the assistive/resistive strategy, some definition of this desired behavior is required.

2.3 Reference Definiton

Defining the reference for pHRI involves choosing between many possible solutions to achieve the task goal and

translating that solution into something that the system can feasibly execute and monitor throughout that execution. When

autonomous systems are acting alone, one can simply define a trajectory over the robot joint states and use state error

feedback to execute the trajectory. However, in activities of daily living, there are many possible redundant solutions to

seemingly simple tasks like reaching and stepping. Often trajectories are recorded from a human expert [6, 26, 51], a

healthy person [8, 43], or the unaffected limb in hemiparetic stroke [6, 32], but the time-dependence in these definitions is

problematic. A task execution is not less successful because it is slower or faster than the reference. This can be avoided

by defining a reference path rather than a reference trajectory. Potential fields can limit the distance from the path [10, 33]

or, in the case of error augmentation, push users away from the desired path.

Still, this does not answer the higher level question of which trajectory, path, or task strategy the robot assistance should

be supporting. In cases where the task goal is ambiguous, we could plan reference definitions for a short time into the

future using intent detection based on EMG [29], EEG [9, 17, 47], force torque sensors [28, 46], or kinematic data [57].

Proietti et. al suggest that another potential solution is to generate trajectories from statistically consistent patterns from

a sufficient number of healthy subjects [44]. There are almost no instances of this in the literature, possibly, because it

is not clear how one would close the loop on statistical patterns—something that we specifically achieve in the present

work. Even if the average of the two paths were used as a reference, the resulting desired trajectory may not convey the

task goal, and the variance and other statistics of the set of motion strategies are not part of a typical control architecture.

In this paper, we present an approach to reference definition based on statistical task definitions and modulate robotic

assistance based on concepts from information theory.

2.4 Current Study

Our approach is to treat the body as a communication channel and motion as an information carrying signal by relating the

time-averaged behavior of trajectories to a spatial distribution that describes the task. To quantify information content in a

motion in a domain X, one needs to measure a trajectory 𝑥 (𝑡)(e.g., position of an arm over time) that describes movement

of the body and describe the task as a distribution 𝑝 (𝑥) (e.g., the volume of positions that the arm has been in) over states

in the domain. Describing a task by a distribution requires that there is a natural way to describe a task statistically rather

than by specifying a goal state or a goal trajectory. For instance, if there is a particular goal state 𝑠, one can represent

this as a singular function with infinite value at the goal state. Or, if the task definition is a consequence of measuring

many instances of task execution as in Learning from Demonstration (LfD) [3], the collection of observations will form a

distribution. As more demonstrations of the target reaching task are added to the set of observations, the collective time

spent at the goal state would generate a higher peak at the state 𝑠, asymptotically approaching a singular function at the

goal state. In either case, we assess a motion by asking how much information about the task is encoded in the movement.

To compare a trajectory to a distribution, we use ergodicity—which relates the temporal behavior of a motion signal

to a distribution. We implement a hybrid shared controller using an ergodic measure to update the control of a robot

arm online. An error-based AAN path controller is also implemented on the robot arm—a form of virtual fixtures [5]. In
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a study of 24 participants performing a timed drawing task, we compare our approach to virtual fixtures that provide

resistance to users when they are too far from the desired path.

3 ERGODIC HYBRID SHARED CONTROL

Our previous work has compared error-based hybrid shared control (HSC) to unassisted practice in cart-pendulum

inversion task. HSC is hybrid in the sense that it switches between two modes—one where the user has full authority and

another where user inputs are actively rejected. User inputs are never replaced, so users must actively contribute to task

execution. We found that it adapted to user skill, improved performance while in use, improved training within a single

session, and led to greater skill retention over a one week period [15]. An analysis of the data from those experiments

led us to take a closer look at the measures that we were using to evaluate performance. Task-specific measures like

time to success and balance time captured the effect of HSC as form of assistance, but did not capture any training

effects over time in either the control or experimental group. The RMS error of the system states did not capture the clear

improvement in performance when assistance was provided by HSC, but showed that both time and training conditions

were statistically significant factors. An ergodic measure was able to capture both of these effects [14]. This unintuitive

outcome indicates that error-based assistance, by far the most common way of creating an assistive device and measuring

its efficacy, may not be an effective measure for many dynamic tasks.

3.1 Ergodic Metric

Ergodicity can be measured by several metrics [49, 50]. When we analyzed ergodic motion in our prior work, we used the

spectral approach [35], which characterizes ergodicity by comparing spatial Fourier coefficients of a trajectory 𝑥 (𝑡) to

coefficients of a reference distribution 𝑝 (𝑥)—giving us the distance from ergodicity. While one can compute controls

based on this formulation as in [36], there are two major drawbacks. First, this approach scales as O(|𝑘 |𝑛), where 𝑘 is the

maximum integer-valued Fourier term and 𝑛 is the number of relevant states. Second, the use of periodic basis functions

leads to artifacts in the reconstructed distribution. Both of these factors contribute to limitations in computing the measure

online for complex, high-dimensional tasks. In [1], Abraham et al proposed an alternative measure of ergodicity using the

Kullback-Leibler Divergence [27], where the time-average statistics of the trajectory are defined as a mixture distribution:

𝑞(𝑠 |𝑥 (𝑡)) = 𝜂

𝑡𝑓 − 𝑡0

∫ 𝑡𝑓

𝑡0

𝑒𝑥𝑝

[
−1
2
(𝑠 − 𝑥 (𝑡))𝑇 Σ(𝑠 − 𝑥 (𝑡))

]
𝑑𝑡 (1)

where 𝜂 is a normalization constant and Σ ∈ R𝑛×𝑛 is a parameter representing the covariance of the Gaussian approxi-

mation. This is an approximation because the time-averaged statistics of the trajectory is actually a collection of delta

functions parameterized by time. Under this definition, we can define the ergodicity of the trajectory relative to the

distribution 𝑝 (𝑥) using the Kullback-Leibler divergence as:

𝐷𝐾𝐿 (𝑝 (𝑠) | |𝑞(𝑠)) =

∫
X
𝑝 (𝑠)𝑙𝑛 𝑝 (𝑠)

𝑞(𝑠) 𝑑𝑠

=

∫
X
𝑝 (𝑠)𝑙𝑛 𝑝 (𝑠) − 𝑝 (𝑠)𝑙𝑛 𝑞(𝑠)𝑑𝑠

= −
∫
X
𝑝 (𝑠)𝑙𝑛 𝑞(𝑠)𝑑𝑠

Note that we drop the first term because it does not depend on the trajectory 𝑥 (𝑡). Rather than computing the integral over

the entire domain X, we approximate it by sampling such that given a set of 𝑁 points S = 𝑠1, ..., 𝑠𝑁 randomly sampled
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over the domain X, the KL-divergence ergodic measure [1] is computed by,

𝜀𝐾𝐿 = −
𝑁∑︁
𝑖=1

𝑝 (𝑠𝑖 )𝑙𝑛
∫ 𝑡𝑓

𝑡0

𝑒𝑥𝑝

[
−1
2
(𝑠𝑖 − 𝑥 (𝑡))𝑇 Σ−1 (𝑠𝑖 − 𝑥 (𝑡))

]
𝑑𝑡 . (2)

The KL-divergence ergodic measure scales linearly with the number of randomly sampled points, 𝑁 .

3.2 Mode Insertion Gradient

The mode insertion gradient gives an estimate of the sensitivity of the cost to switching from one mode to another

at a particular time. Therefore it is used in mode scheduling problems to find the optimal time to insert a mode from

predetermined set [2, 7, 11, 18, 54]. In hyrbid shared control [15], we instead use the mode insertion gradient to determine

whether or not to accept a switch from the nominal control 𝑢1 to the user action, 𝑢𝑢𝑠𝑒𝑟 . We define the hybrid control, 𝑢2
with the piece-wise function below,

𝑢2 (𝑡) =
{
𝑢𝑢𝑠𝑒𝑟 𝑡 ≤ 𝑡0 + 𝑡𝑠
𝑢1 𝑡0 + 𝑡𝑠 < 𝑡 ≤ 𝑡0 +𝑇

(3)

We assume a system with dynamics

¤𝑥 (𝑡) = 𝑓 (𝑥 (𝑡), 𝑢 (𝑡), 𝑡) = 𝑔(𝑥 (𝑡)) + 𝐵(𝑥 (𝑡), 𝑡)𝑢 (𝑡), (4)

where ¤𝑥 (𝑡) is linearly dependent on the control 𝑢. The cost describing the task objectives is

𝐽 = 𝜀𝐾𝐿 +
∫ 𝑡𝑓

𝑡0

𝑙2 (𝑥 (𝑡), 𝑢 (𝑡))𝑑𝑡, (5)

where 𝑙2 (𝑥,𝑢) represents the running cost associated with the control effort, safety parameters, or other secondary

objectives. The mode insertion gradient is then,

𝑑 𝐽

𝑑𝜆
= .𝜌 (𝜏)𝑇 [𝑓 (𝑥 (𝜏), 𝑢2 (𝜏)) − 𝑓 (𝑥 (𝜏), 𝑢1 (𝜏))] . (6)

In (6), state 𝑥 is calculated using nominal control, 𝑢1, and 𝜌 is the adjoint variable calculated according to Equation 7,

below.

¤𝜌 = −𝑙 (𝑥, 𝑡) − 𝐷𝑥 𝑓 (𝑥,𝑢1)𝑇 𝜌, (7)

𝑠𝑢𝑏 𝑗𝑒𝑐𝑡 𝑡𝑜 𝜌 (𝑡0 +𝑇 ) = 0

where

𝑙 (𝑥, 𝑡) = −
𝑁∑︁
𝑖=1

𝑝𝑠𝑖

𝑞𝑠𝑖
𝑒𝑥𝑝

[
−1
2
(𝑠𝑖 − 𝑥)𝑇 Σ−1 (𝑠𝑖 − 𝑥)

]
(𝑠𝑖 − 𝑥)𝑇 Σ−1 + ∇𝑙2 (𝑥,𝑢) .

In the work presented here, we define the nominal control, 𝑢1, to be equivalent to the free dynamics of the system.

Nevertheless, a calculated controller action could be used to define 𝑢1 as in [23] and [15]. User inputs are then accepted

when the following integral computed over a time window into the future is negative:∫ 𝑡0+𝑇

𝑡0

𝑑 𝐽

𝑑𝜆
(𝑡)𝛿𝑡 < 0. (8)
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When the integral of the mode insertion gradient is negative, 𝑢2 is a descent direction over the time horizon, 𝑇 . Thus the

mode insertion gradient as an acceptance criterion represents quantitatively the advantage or disadvantage of allowing the

user to push the system in the way that they are currently trying to move it.

3.3 Algorithm Implementation

The ergodic hybrid shared control algorithm works as follows. Given a system and an operator, assume that a user input is

measured every 𝑡𝑠 seconds. The user input is used to define the control input 𝑢2, and the system is simulated forward

for 𝑇 seconds into the future. The user input is assessed based on the integral of the mode insertion gradient—roughly

asking whether the user understands the task goal. When the integral is negative, if the magnitude of the user command is

within the allowed limits, the command is applied to the system. Otherwise, saturation may be applied. On the contrary,

if the criterion is not met, one of two alternatives can be followed: a) the system input can be set equal to zero (user

command is “rejected") or b) the system input can be set equal to the nominal control value. The latter case would result

in potentially never-failing interfaces, serving both training and safety purposes. Note that in our experimental setup we

followed the first approach; the rationale behind this choice is that being allowed to fail in the task should provide clear

indications as to whether the corrective feedback has any effect on performance. When inputs were rejected in these

experiments, the impedance at the end-effector was increased proportional to the difference between the current velocity

and the velocity of the system at the time of the last accepted input. This results in the interface being transparent when

user inputs are accepted or velocity being held constant when inputs are rejected. This process is illustrated in Algorithm 1.

Algorithm 1: Ergodic hybrid shared control

1 Initialize current time 𝑡0, sampling time 𝑡𝑠 , time horizon length 𝑇 , final time 𝑡𝑓 , input saturation 𝑢𝑠𝑎𝑡 and target

distribution 𝑝 (𝑥).

2 while 𝑡0 < 𝑡𝑓 do
3 Generate N samples of 𝑠𝑖 within the domain X
4 Infer user input 𝑢𝑢𝑠𝑒𝑟 from sensor data

5 Simulate the system (4) for 𝑡 ∈ [𝑡0, 𝑡𝑠 +𝑇 ]
6 Simulate (7) for 𝑡 ∈ [𝑡0, 𝑡𝑠 +𝑇 ]
7 Compute

∫ 𝑡𝑠+𝑇
𝑡0

𝑑 𝐽

𝑑𝜆
(𝑡)𝛿𝑡 using Equation 6

8 if
∫ 𝑡𝑠+𝑇
𝑡0

𝑑 𝐽

𝑑𝜆
(𝑡)𝛿𝑡 < 0 then

9 if |𝑢𝑢𝑠𝑒𝑟 | < 𝑢𝑠𝑎𝑡 then
10 Use 𝑢𝑢𝑠𝑒𝑟 as current input, 𝑢𝑐𝑢𝑟𝑟 = 𝑢𝑢𝑠𝑒𝑟
11 else
12 Apply saturated user input 𝑢𝑐𝑢𝑟𝑟 = 𝑢𝑠𝑎𝑡
13 else
14 Completely “reject" 𝑢𝑢𝑠𝑒𝑟 (𝑢𝑐𝑢𝑟𝑟 = 0)
15 Apply 𝑢𝑐𝑢𝑟𝑟 for 𝑡 ∈ [𝑡0, 𝑡0 + 𝑡𝑠 ]
16 𝑡0 = 𝑡0 + 𝑡𝑠
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4 SIMULATION RESULTS

Ergodic HSC was first implemented on a simulated double integrator system with a sampling rate of 60 𝐻𝑧, where the

user input was randomly sampled from a uniform distribution 𝑢𝑢𝑠𝑒𝑟 ∈ [−10𝑚/𝑠2, 10𝑚/𝑠2]. The cost function defined in

Equation 5 was used with a running cost defined as

𝑙2 (𝑥 (𝑡), 𝑢 (𝑡)) = 𝑢𝑇 0.0001I𝑢.

We can see that even using noise as the user input, the hybrid shared control paradigm can produce drawings that resemble

the original images (Figure 2). Unlike the robotic platform used in the experiment, where shared control was implemented

by updating impedance control parameter, the simulation is able to perfectly reject the inputs that do not satisfy the

inequality in Equation 8 . In prior work, we have noted the differences in performance when the robotic interface has

relatively low power compared to the user [16] with learning outcomes being more significant when the system has power

sufficient to mechanically alter the movements of the user [15].

Fig. 2. When noise is used as input, we can use hybrid shared control to reject any noise that does not represent a descent
direction for the ergodic cost. This enables us to transform a noisy input (gray) that would generate a random walk to the
filtered input (blue). This generates a trajectory that roughly follows the lines of the original image.

5 METHODOLOGY

In this study, we assess ergodic hybrid shared control in a set of timed drawing tasks, and compare it to virtual fixtures.

Both hybrid shared control and virtual fixtures require the active participation of the user. Without input from the user,
Manuscript submitted to ACM
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neither control framework will complete the task on its own. Both control strategies are also designed to assist-as-needed—

enabling some variability in the user’s task execution. HSC achieves this by instantaneously evaluating user inputs based

on their impact on a cost function in the future. The virtual fixtures are only enabled when participants are far from the

task path.

The scale of the drawings in this study requires the participant to reach over a large area of their workspace much

like therapeutic reaching exercises in [12, 13, 22, 39, 52]. Drawing has a high level goal similar to daily activities like

cleaning or food preparation, where there are many possible strategies one could use to complete the task and the order

of locations visited does not necessarily affect the end result. Yet, one can still make a comparison to an error-based

controller by using the distance from the lines in the drawing to generate a set of virtual fixtures that limit the distance

between the user’s path and the desired path. The time limit adds a dynamic challenge to the task such that healthy adults

need practice to improve their performance. Twenty-four participants were asked to perform a set of baseline tests without

assistance, followed by a training set and post-training set for each image tested. The type of assistance provided during

training was randomly assigned. The experimental design allowed us to establish performance changes due to each of the

control strategies and compare their effects on training.

5.1 Study Design/Apparatus

Participants were asked to draw the four grayscale line drawings shown in Figure 1. Each were sized to 2200𝑝𝑥 × 2200𝑝𝑥
They were given a maximum of 10 seconds to copy each image into a box on the screen. The area on the screen

corresponded to a 1𝑚 × 1𝑚 horizontal plane in front of the user, much like the mapping of a mouse to a computer screen.

For our experiment, we utilized a Sawyer Robot (Rethink Robotics) in the interaction control mode provided in the

Intera SDK. Interaction control mode enabled us to set the type of control—force vs. impedance—of each dimension in

Cartesian space. Sawyer’s integrated sensors were used track the state of the end-effector as well as estimate the user

inputs. The sensor information was sent to the host computer which simulated a double integrator system and executed

algorithm 1—sending updates on the interaction control parameters according to Equation 9 and Equation 10, defined

below. The host computer also updated the visualization provided to the users.

5.1.1 Virtual Fixture Implementation. Virtual fixtures were implemented by setting the planar components of the

interaction control commands to force mode. The other dimensions were set to a high level of impedance, restricting the

motion of the user to the horizontal plane. When users were within 100 pixels (approximately 4.5cm) of a dark pixel in

the given drawing, impedance and force parameters were set to 0. When this condition was violated, a force proportional

to the distance to the nearest pixel and the current velocity was produced by the robot as in Equation 9,

𝐹𝑉𝐹 =
𝐾𝑃 (𝑑𝑝 − 𝑟 )

𝑑𝑝

(
𝑥𝑝 − 𝑥𝑢𝑠𝑒𝑟
𝑦𝑝 − 𝑦𝑢𝑠𝑒𝑟

)
+ 𝐾𝐷vuser, (9)

where 𝑑𝑝 is the distance to the nearest dark pixel, 𝑟 is the radius of the channel, and (𝑥𝑝 , 𝑦𝑝 ) are the coordinates of the

nearest pixel. 𝐾𝑃 and 𝐾𝐷 are gains on the proportional and derivative terms of the feedback law, respectively.

5.1.2 HSC Rejection Equations. There are several ways to implement the rejection of user actions described in

Algorithm 1. When using a low power haptic device, one can generate a transient virtual wall or ignore the user inputs

when using an admittance controller with sufficient mechanical power to generate forces equal to that of the user. In this

study, we modify the impedance parameters in the end-effector space of the robot. The task-irrelavant dimensions were

set to a high impedance—again restricting the motion of the user to the horizontal plane. When user actions are accepted,
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impedance in the plane is set to zero. When user inputs are rejected, impedance parameters are set to track the velocity at

the time of the last accepted action according to the following equation:(
𝐷𝑥

𝐷𝑦

)
=

(
𝑠𝑔𝑛(𝑣𝑥 ) 0

0 𝑠𝑔𝑛(𝑣𝑦)

) (
Δ𝑣𝑥

Δ𝑣𝑦

)
. (10)

5.2 Procedure

At the beginning of the session, participants were seated in a chair facing the robot and a display screen, and were asked

to grasp a handle on the robot end-effector. Sawyer is capable of exerting forces at this interaction point between the user

and the robot in the x, y, and z directions, and can exert torques about all 3 axes. However, we maximized the impedance

on the torques about these axes as well as the force in the z-direction, restricting the end effector to a horizontal plane.

The position of the end-effector was measured from the joint angles using forward kinematics, and the acceleration of the

end effector was measured using an inertial measurement unit installed in the end-effector. The acceleration was used as

input to the simulated double integrator system. At start-up, force/torque limits were place on each degree of freedom.

A host computer was used to communicate with Sawyer during setup and operation. Using the core software architecture

of the Robot Operating System (ROS), the Host received position and acceleration information from Sawyer. The host also

sent messages setting the parameters of the Sawyer impedance model and controller. Information from the Sawyer was

used to visualize the interaction point as a 3D cursor and the drawing history as a series of dots in the ROS visualization

package, rviz. The position information also kinematically controlled the double integrator system being simulated by the

host computer. The host set the parameters to either increase of decrease the impedance at the end effector or modify the

forces at the end effector according to either Equation 9 or Equation 10.

At the beginning of the session, the drawing task was demonstrated to the participants by the authors, and participants

were able to practice drawing on the screen using the robot as a cursor. Participants performed a baseline set of trials

in which they drew each image 10 times for a total of 40 trials. The order in which they completed these drawings was

randomized to minimize learning during the baseline trials. After the baseline set of trials, participants trained with their

assigned control strategy completing both the training and post-training trials for one image before moving on to the next

image.

Subjects were recruited locally (n=24), and had to be healthy, able-bodied adults (in the age range of 18 to 50) with

no prior history of upper limb or cognitive impairments. Only right-hand dominant participants were accepted into the

study, and each subject performed the task with their right limb. All study protocols were reviewed and approved by the

Northwestern University Institutional Review Board, and all subjects gave written informed consent prior to participation

in the study.

5.3 Measurements & Statistical Analysis

We assess user performance using the metrics that close the loop in the two control strategies that were tested—error and

ergodicity. The data for each image consisted of 10 baseline trials, 10 trials with either ergodic HSC or virtual fixtures,

and 10 trials post-training for a total of 30 trials for each of the four images. These were grouped into sets of 10 trials to

evaluate subject performance over time. The analysis consisted of two-factor (set and group) mixed design ANOVA tests.

The ANOVA’s were used to compare the effect of the ergodic HSC and virtual fixture training on each of the performance

measures. When significant main effects or interaction effects were detected, student’s t-tests were used to evaluate the

difference between the performance of the ergodic HSC group and the control group.
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5.3.1 Error. Every 𝑡𝑠 seconds, we measured the position of the robot end-effector and translate it to image coordinates

on the domain [0, 2200] × [0, 2200]. We then perform a search for the nearest dark pixel (saturation< 130). The distance

between the end-effector position and the nearest dark pixel is recorded. The error measure that we report here is the mean

distance from the nearest dark pixel computed for each trial. The error metric captures the accuracy of the participant’s

movement—a common target for robotic training. In tasks such as self-feeding this accuracy is crucial, but for other tasks

acceptable trajectories lie within a range as in cleaning a spill. As long as the center of one’s palm travels close enough to

the spill, the task can be successfully completed.

5.3.2 Ergodicity. We treat each image as a discrete histogram over the domain and generate 100 random samples from

that distribution as can be seen in Figure 3. We use these to calculate the ergodic metric according to Equation 2–giving

us the trajectory’s distance from ergodicity for each image. This distance characterizes how far a particular task execution

is from the distribution of normative task executions. Therefore trajectories that are close enough to the distribution

of demonstrations—represented by the pixel values in the drawings in this experiment—are not penalized for minor

variations under this metric.

5.3.3 Completeness. Eight students and faculty with limited knowledge of the study design were recruited to rate the

completeness of the drawings generated in the study. Scorers were asked to provide a rating evaluating the completeness

of each drawing on a scale from 1 to 100. Each participant drawing was assigned a random code and was randomly

assigned to one of eight scorers via an online survey. Scorers were instructed not to judge the quality of the drawing on the

basis of scale or accuracy. Instead, the scorers were asked to rate the completeness of the image based on what percentage

of the elements of the original image was completed. Due to randomization of 3000 ratings to 2880 total images, many of

the drawings received only one score from the online survey. To mitigate rater bias, drawings were analyzed in sets of 10

for the baseline and post-training sets. In a typical upper limb task like target reaching, one could evaluate whether a

task was successful or complete based on whether or not a certain region around the target was visited. In drawing, the

completion score provides a continuous measurement of task success.

Fig. 3. Using importance sampling, 100 sample locations are randomly chosen from the original image. The color intensity
at each point is used to weight a series of Gaussian distributions that generate the reference distribution.
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6 EXPERIMENTAL RESULTS

The results were reported as follows. First, the error of each group was statistically tested in Section 6.1. An analysis of

the ergodicity was performed to test for differences in the relative information communicated in the drawings of the HSC

group and the VF group in Section 6.2. Finally, an analysis of the completion scores of each group was performed in

Section 6.3. The results demonstrated that training with the ergodic HSC increased subject performance in later trials

within the same session. In each section the relevant statistics are reported first, followed by a summary and interpretation

of the results.

6.1 Error Measure

The mean error of each group in each set can be seen in Figure 4. The progress of the two groups over the training

session was analyzed by performing mixed design ANOVAs on the HSC group (between participants) and set (within

participants) using the error on all four images. Only the baseline trials (set 1) and post-training trials (set 3) were used to

avoid measuring the effects of the assistance itself in the analysis.

Fig. 4. Although both groups performed similarly in terms of error in the baseline set, the group that trained with HSC had
lower error when drawing the apple, umbrella, and house in the post-training trials. Interestingly, the virtual fixtures were
activated based on the error measure, but the umbrella was the only image in which virtual fixtures actually reduced errors
in the drawings. Note: error bars indicate standard error; significance is indicated by ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001.

The mean error of the apple drawings had two significant factors. The main effect of training group was not significant

(𝑝 = 0.636, 𝐹 (1, 20) = 0.231). However, the main effect of set was significant (𝑝 = 5.58 × 10−7, 𝐹 (1, 454) = 25.784), as

was the interaction of training and set (𝑝 = 0.0272, 𝐹 (1, 454) = 4.913). Interestingly, study participants in the VF group

increased their average distance from a dark pixel both during and after training, whereas participants using HSC had

similar levels of error in set 1 and set 3.

The mixed design ANOVA design was also applied to the error in the banana drawings, and the main effect of

training group was not significant (𝑝 = 0.4611, 𝐹 (1, 20) = 0.565). The main effect of set was not significant either (𝑝 =

0.1132, 𝐹 (1, 454) = 2.514). The interaction effect of block and training group was significant (𝑝 = 0.00202, 𝐹 (1, 454) =
9.643). This reflects the fact that the two groups performed similarly in the first set, but the VF group had lower error

in the post-training set. This statistical result is unique to the banana drawings. The grayscale area on the interior of

this drawing created a narrow gap between the virtual fixtures meant to constrain participants to the outer line and the

fixtures meant to constrain them to the inner gray line. Participants would oscillate between the two fixtures because

when they reached the midpoint of the region between a black pixel and a gray pixel, the direction of the robotic force

would change. The lower error in set 3 may be a result of participants learning to stay in the interior of the drawing where
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error will be low because a black or gray pixel are frequently nearby. The interior of this drawing is relatively low area of

the distribution used to represent the task, so this low error area was not targeted by the HSC assistance as the gray area

would have relatively low impact on reducing the cost in (5).

When the same mixed design ANOVA was applied to the error in the umbrella drawings, the main effects of set

(𝑝 = 0.071, 𝐹 (1, 454) = 3.27) and group (𝑝 = 0.811, 𝐹 (1, 20) = 0.059) were not significant. The interaction effect of

training group and set was significant (𝑝 = 0.0495, 𝐹 (1, 454) = 3.88). In the case of this drawing, the VF group had higher

error in the post-training trial compared to the HSC group, though the two groups had similar baseline error.

The analysis of the error in the drawings of the house revealed a significant main effect of set (𝑝 = 1.23 ×
10−5, 𝐹 (1, 454) = 19.545), but the interaction effect of set and training group (𝑝 = 0.46, 𝐹 (1, 454) = 0.546) was

not significant. The main effect of group also was not significant (𝑝 = 0.728, 𝐹 (1, 20) = 0.124). Participants generally

improved as a result of increased practice in this simple line drawing as opposed to the feedback from either of the

training paradigms. As in the drawings of the apple and umbrella, the HSC group had lower error than the VF group in

the post-training set, though they started at the same baseline error.

In 3 of the 4 drawings, the group that trained with virtual fixtures, which were designed to reduce error, actually

performed worse during set 3 in terms of error compared to the group that trained with HSC. When we look at Figure 4,

we can see that even when the virtual fixtures were engaged in set 2, the HSC group had lower error than the VF group

when drawing each image except the umbrella. These results demonstrate that even when feedback is based on spatial

statistics, other standard measures like error can be improved though they are not directly targeted by the algorithm.

Fig. 5. Example drawings from Participant 10 training with virtual fixtures. Each plot contains the desired image as well as
three drawings by the participants. In drawings with virtual fixtures, we see two notable responses to the guidance. Wall
following is evident in the drawings of the apple, banana, and house. There are also oscillations when bumping into and out
of the wall particularly in the drawings of the banana and the stem of the apple.
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One reason that error increases when participants train with virtual fixtures is that participants exploit these guides

when they are present. For the participant shown in Figure 5, it is clear when they were drawing the apple, banana, and

house, that they found the virtual wall and followed it such that they maintain a consistent distance from the desired lines.

When the virtual fixtures are removed, this bias remains. The offsets in the post-training drawings are similar to those we

see in the drawings with virtual fixtures.

6.2 Ergodic Measure

Two-factor mixed design ANOVAs were used to assess the effects of the group (between-subjects) and set (within-subjects)

on the ergodic measure defined Section 5.3.2 for each image used in the study. The HSC group and VF group were

evaluated based on the baseline trials (set 1) and the post-training trials (set 3) only. Set 2 was left out of the ANOVA, so

that effects of the assistance itself would not be measured in the analysis.

Fig. 6. Participants using Hybrid Shared Control in set 2 generated drawing trajectories that were more ergodic with respect
to the desired image than those using virtual fixtures. This advantage was maintained in set 3 when the assistance was
removed in the apple, umbrella, and house drawing. The difference between the two groups for set 3 of the banana drawings
was not significant. Note: error bars indicate standard error; significance is indicated by ∗𝑝 < 0.05, ∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001.

The factorial ANOVA of the ergodic measure on the apple image revealed that the interaction effect of group and

set was the only significant factor (𝑝 = 6.17 × 10−4, 𝐹 (1, 454) = 11.889). The main effects of group and set were not

significant for the apple drawings (𝑝 > 0.05). The HSC and VF group performed similarly in the baseline trials, but the

HSC group performed slightly better after the training set.

When an analysis of variance was performed on the ergodicity of the banana drawings, again, there was no significant

effect of group, set, or the interaction of those two factors (𝑝 > 0.05). Although the error measure and VF algorithm

places equal weight on the black outline and the gray interior line of this drawing, the reference distribution (Figure 1)

does not. Therefore, the ergodic measure and the HSC algorithm does not improve when participants fill in these lower

density areas.

When the ergodicity of the trajectories drawing the umbrella were compared, the significant factors were the set

(𝑝 = 6.21 × 10−5, 𝐹 (1, 454) = 16.34) and the interaction between group and set (𝑝 = 1.95 × 10−4, 𝐹 (1, 454) = 14.11). The

main effect of group was not significant (𝑝 = 0.613, 𝐹 (1, 20) = 0.264). The group was not a significant factor affecting the

error in the house drawings (𝑝 = 0.238, 𝐹 (1, 20) = 1.477). The main effect of set (𝑝 = 0.73, 𝐹 (1, 454) = 0.119) also was

not significant, but the interaction of group and set (𝑝 = 7.90 × 10−8, 𝐹 (1, 454) = 29.795) were significant.

The results of the ANOVA of ergodicity for 3 of the 4 drawings showed that the interaction effect of set and group

was a significant factor—implying that while the participants started at the same performance level in their baseline set,

participants in the HSC group attained a higher performance level in the post-training set than the VF group.
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Fig. 7. Representative examples of trajectories from Participant 10 using virtual fixture (top) and Participant 6 using hyrbid
shared control (bottom). The time-average statistics of the trajectories are plotted using the Gaussian approximation from
Equation 1. The trajectories in the top row are taken from the middle row of Figure 5. However, here we plot them over a
representation of their spatial statistics. There is high density around the trajectory, particularly points where participants
moved more slowly, such as corners on the house or cusps on the apple and umbrella. For Participant 6 using HSC (bottom),
we see that they were generally moving more quickly and covered more of the original image than the drawings with VF. This
example demonstrates how HSC participants drew smaller, but more complete drawings than the participants that trained
with virtual fixtures. The difference between the two distributions demonstrates how the drawings with HSC contained more
information about the original image than the drawings with VF.

The differences in the ergodic measure implies that participants training with HSC generated trajectories that encoded

more information about the original image. This is likely due to the assistance intervening based on a measure of overall

performance as opposed to the local distance measure employed by the virtual fixtures. The virtual fixtures generally led

participants to draw more slowly—not completing the image. Participants receiving feedback from HSC drew images that

were smaller, but more complete as can be seen in the examples in Figure 7.

6.3 Completion Score

The mean completion score of each group in each set can be seen in Figure 8. The change in completion percentage

of the two groups over the course of training was analyzed by performing mixed design ANOVAs on the HSC group

(between participants) and set (within participants) using the ratings on all four images. Only the baseline trials (set 1)

and post-training trials (set 3) were used to avoid measuring the effects of the assistance itself in the analysis.

The completion percentage of the apple drawings had two significant factors. The main effect of training group was not

significant (𝑝 = 0.400, 𝐹 (1, 20) = 0.739). However, the main effect of set was significant (𝑝 = 0.00245, 𝐹 (1, 460) = 9.276),

as was the interaction of training and set (𝑝 = 5.56 × 10−5, 𝐹 (1, 460) = 16.556). Study participants in the VF group

completed around the same amount of this drawing both before and after training, whereas participants using HSC

completed 7% more on average.

The mixed design ANOVA was also applied to the completion score in the banana drawings, and the main ef-

fect of training group was not significant (𝑝 = 0.393, 𝐹 (1, 20) = 0.761). However, the main effect of set was sig-

nificant (𝑝 = 2.200 × 10−5, 𝐹 (1, 470) = 18.373). The interaction effect of block and training group was significant

(𝑝 = 0.0497, 𝐹 (1, 470) = 3.871). This reflects the fact that the two groups performed similarly in the first set, but the
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Fig. 8. The virtual fixtures actually reduced completeness score in set 2 for every image except the banana, while the HSC
greatly increased the completion scores. Therefore, the group that trained with HSC had much higher completion scores
when drawing the apple, umbrella, and house in the post-training trials, even though both groups performed similarly in
terms of completion score in the baseline set. Note: error bars indicate standard error; significance is indicated by ∗𝑝 < 0.05,
∗∗𝑝 < 0.01, ∗∗∗𝑝 < 0.001.

VF group had completed more of the drawings in the post-training set. Both groups improved their completion scores

post-training.

When the same mixed design ANOVA was applied to the completion scores in the umbrella drawings, the main

effect of set (𝑝 = 1.82 × 10−8, 𝐹 (1, 477) = 32.79) and the interaction effect of training group and set were significant

(𝑝 = 0.005, 𝐹 (1, 477) = 7.67). The main effect of group (𝑝 = 0.662, 𝐹 (1, 20) = 0.197) was not significant. In the case of

this drawing, the VF group and the HSC group had higher completion scores in the post-training trials compared to their

baseline. Although the two groups had similar baseline completion scores, the HSC group achieved significantly higher

scores that the VF group post-training.

The analysis of the completion score in the drawings of the house revealed that the main effects of set (𝑝 =

0.162, 𝐹 (1, 455) = 1.963) and group(𝑝 = 0.284, 𝐹 (1, 20) = 1.210) were not significant, but the interaction effect of

set and training group (𝑝 = 0.003, 𝐹 (1, 455) = 9.190) was significant. As in the drawings of the apple and umbrella, the

HSC group had higher completion scores than the VF group in the post-training set, though they started at the same

baseline error. In this drawing in particular, the completion scores of the VF group actually went down in the post-training

trials.

In 3 of the 4 drawings, the group that trained with virtual fixtures, had lower completion scores on their drawings

compared to the group that trained with HSC. When we look at Figure 8, we can see that the HSC group had much higher

completion scores in set 2 and retained a modest advantage over the VF group in the post-training trials. These results

demonstrates that the HSC encouraged participants to take actions that improved the overall quality of the drawing rather

than the accuracy of an individual pose.

7 DISCUSSION & CONCLUSIONS

There are numerous articles stating the potential of robotics to support training and rehabilitation because of their ability

to assist users in completing many repetitions and their ability to provide quantitative feedback. The questions of how

robots should assist/resist users, how to define the task, and what metrics they should use quantify success have a profound

impact on the efficacy of training. Prior studies show that error, variability, and active user participation—achieved by

adapting the robot support as needed—are crucial to motor learning. Furthermore, we know that there are many equally

good solutions to a particular task that a person might use.
Manuscript submitted to ACM



Ergodic Shared Control: Closing the Loop on pHRI Based on Information Encoded in Motion 17

We have developed a hybrid shared controller that selectively rejects or accepts user actions based on how that action

will affect the time-averaged statistics of the trajectory for some time into the future—that is, how the amount of task

information present in the trajectory will be affected. Using this controller, a robot can provide physical corrective

feedback during training while avoiding issues of time-dependence and selection of a particular strategy to complete a task.

When user inputs increase the ergodicity of the trajectory with respect to a distribution defining the task, the controller

is transparent to the user. Otherwise, user inputs are rejected by providing an equal and opposite force—maintaining a

constant velocity. In our study, we experimentally compare this novel assistance paradigm, ergodic hybrid shared control,

to a standard form of assistance based on error.

Our results demonstrated that although ergodic HSC is based on a global measure of the distance from ergodicity rather

than a local measure of error, it improved the error measure. Participants who trained with the error-based assistance

actually performed worse in terms of error than those who trained with ergodic HSC. Because the virtual fixtures provide

feedback based on distance from a local point on the desired path, there is a tendency for participants to follow the virtual

fixtures. This leads to drawings that are precise but not accurate, following the same incorrect path over multiple trials.1

Or, when two desired points are close together on the desired path as seen in the drawings of the banana, the user can

oscillate between those points, achieving low error without following the intended paths at all. This emphasizes the fact

that error is a limited measure that cannot capture facets of broader goals. Although error was higher in the VF trained

participant drawings, one would not say that their skill in reproducing the drawings was necessarily poor. If the reference

had been built off many example drawings, they likely would have fallen within range of one or more of the samples. The

banana can be viewed as an example of how specifications using a single trajectory can over-prescribe a task. The gray

line in the middle is a minor detail, but it is weighed equally with other dark points when the task is specified as a path.

Ergodic HSC treats the gray line as less important in the context of the overall goal just as it would if one had combined

multiple demonstrations to form the task definition and a majority of the demonstrations did not include this detail. The

fact that a detail appears in only a few demonstrations in an ensemble implies that it may not necessary to complete the

task.

When evaluating the impact of training in terms of the time-averaged statistics of the participants’ trajectories, we

found that there was a significant advantage to training with ergodic HSC. The group that trained with virtual fixtures

produced consistently incomplete drawings, whereas the group receiving feedback based on the ergodic measure produced

drawings that were smaller than the original image, but more complete. This difference emphasizes the need for assistance

based on global measures as opposed to local interactions. Combining the ergodic measure with the dynamics of the

system in the MIG, allows ergodic HSC to be sensitive to time without being dependent on time like some other assistance

strategies.

Timed drawing is not a daily task that people need assistance with or training for. Nevertheless, it shares characteristics

with tasks such as cleaning, personal care, cooking, and reaching. In these activities of daily living (ADLs), completing

the task in a way that is ‘good enough’ can be more valuable than partially completing the task with a highly accurate,

precise movement. For instance, when cleaning a spill on your countertop with a sponge, you could use a back and forth

scanning motion, but the precise trajectory would not be very important, and you could overreach or underreach the

edge of the spill while still removing most of it from the surface. Reference distributions for these types of tasks can be

developed with relatively few task demonstrations using the ergodic imitation framework presented in [24]. For activities

that require higher accuracy such as self-feeding, a single reference distribution may lead to an ergodic controller that

1One could set up virtual fixtures arbitrarily close to the drawing path (i.e. 𝑟 = 0 in Equation 9)—reducing the error in set 2. However, the motor learning
literature suggests that such a restrictive approach to managing error would lead to poor training outcomes [53].
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fails to adequately support the task. If the task is segmented, task segments requiring high accuracy like reaching the

mouth in self-feeding could be represented with distributions that approach a delta function as more demonstrations are

included in the training data. Alternatively, one could specify accuracy-oriented tasks using trajectories; we do not claim

that all tasks should be represented using distributions. Yet, many tasks can be and some tasks cannot be represented well

using trajectories.

The combination of the control approach presented here with ergodic imitation—e.g., combining multiple demonstra-

tions into a single distribution and executing ergodic HSC with respect to that distribution—could enable one to develop

a robotic system that can rapidly take demonstrations from a teacher and return an autonomous training assistant that

accounts for both the task goal and the natural variability that one should expect in typical human motion.
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