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Abstract
Despite the fact that robotic platforms can provide both consistent practice and objective assessments of users over the
course of their training, there are relatively few instances where physical human robot interaction has been significantly
more effective than unassisted practice or human-mediated training. This paper describes a hybrid shared control
robot, which enhances task learning through kinesthetic feedback. The assistance assesses user actions using a task-
specific evaluation criterion and selectively accepts or rejects them at each time instant. Through two human subject
studies (total n=68), we show that this hybrid approach of switching between full transparency and full rejection of
user inputs leads to increased skill acquisition and short-term retention compared to unassisted practice. Moreover,
we show that the shared control paradigm exhibits features previously shown to promote successful training. It avoids
user passivity by only rejecting user actions and allowing failure at the task. It improves performance during assistance,
providing meaningful task-specific feedback. It is sensitive to initial skill of the user and behaves as an ‘assist-as-
needed’ control scheme—adapting its engagement in real time based on the performance and needs of the user.
Unlike other successful algorithms, it does not require explicit modulation of the level of impedance or error amplification
during training and it is permissive to a range of strategies because of its evaluation criterion. We demonstrate that the
proposed hybrid shared control paradigm with a task-based minimal intervention criterion significantly enhances task-
specific training.
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1 Introduction

Approaches to designing kinesthetic feedback for robotic
training platforms lie on a spectrum from antagonistic and
resistive strategies that are dynamically updated based on
user performance to passive assistive strategies in which
users have a consistent guide during training. Training
regimens at either end of the spectrum have been shown to
be appropriate depending on the type and relative difficulty
of the task. Passive assistance in the form of virtual
fixtures (Rosenberg 1993) or record and replay strategies
can provide task-relevant feedback to users by demonstrating
correct movements. However, this type of guidance may not
engage or challenge users because it does not dynamically
adapt to different users or changes in user performance.
Training in which errors are amplified rather than reduced
by guidance has been effective in inducing adaptations
in healthy and impaired individuals (Patton et al. 2006b)
during quasistatic reaching, but guidance was more effective
in a timing-based motor task when individuals were less
skilled (Milot et al. 2010). Active assistance or shared control
has been introduced as an alternative where the level of
assistance or impedance is modulated based on performance
heuristics. Though the results of robotic training are mixed,
meta-analysis of studies using robotics in therapeutic settings
demonstrate small but significant improvements in patient
outcomes compared to usual care (Krebs 2018).

Here we present a hybrid shared control paradigm that
lies in the middle of that spectrum—it does not resist

or aid correct actions but requires user action for task
completion. The autonomy evaluates user inputs based on
criteria that capture how well the current input contributes
to task completion. If the filtering criterion is met, the
controller is transparent to the user. When the criterion
is not met, the robot physically rejects the user input,
providing feedback but not guidance. Rather than adjusting
the relative contributions of the robot and human on a
continuum based on heuristics over past performance of the
user, we hypothesize that using an evaluation criterion to
instantaneously switch between full user control and full
rejection of user actions by the autonomy is sufficient to
improve user performance, adapt to user skill, and ultimately
enhance learning of a task.

The user input is evaluated at each time instant, using
methods from model predictive control, which allows us
to avoid prescribing a desired trajectory over time. This
enables users to try different task completion strategies,
to make errors, and to fail—all of which are critical to
learning (Thoroughman and Shadmehr 2000; Lewek et al.
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2009; Koenig and Riener 2016). Additionally, the fact that
we choose to only reject user input rather than replacing user
input means that users must engage in the task actively to
achieve success. The results of two user studies demonstrates
that the controller-filter also adapts to the initial skill of the
users, and adjusts the level of assistance based on current
user performance much like an assist-as-needed controller. It
does this without any pre-training assessments of the user’s
initial skill and without evaluating the overall performance
of the subject within the current trial or any preceding
trials. We find that this form of hybrid shared control is an
effective training tool for both improving skill acquisition
and retention of skill one week post-training.

In this paper we show that a hybrid approach to switching
between full user autonomy and full rejection of user inputs
is an effective way to enhance learning through forceful
interaction with a robot. Furthermore, we show, through
two user studies, that the task-based switching control leads
to improved subject performance while the assistance is
engaged, decreased intervention for highly skilled users, and
assistance that increases when subject performance is poor
and becomes more transparent when subjects perform well.

The paper is organized as follows. First, we review
relevant work in robotic training in Section 2 and our prior
work in Section 3. We introduce the hyrbid shared control
algorithm in Section 4.1 and discuss the task-based criteria
used to assess user inputs in Section 4.2. The experimental
platform and protocol is discussed in Sections 4.3 and
4.6, respectively. Experimental results of two user studies
are given in Section 5—discussing the training effect in
Section 5.1 and the relevant features in Section 5.2-5.4.
Finally, a discussion of the results and their implications for
future work is given in Section 6.

2 Relevant Background
Using robotics in training provides a platform for consistent,
high intensity repetitions that are not limited by the time the
coach or therapist has available. In rehabilitation settings,
specifically, devices can provide support and safety—
reducing the physical and cognitive load of the caregiver.
Patients who receive additional therapy with robotics often
have improved clinical outcomes compared to patients
receiving the standard of care (Lum et al. 2002; Volpe
et al. 2005; Reinkensmeyer et al. 2004; Krebs et al. 2007;
Squeri et al. 2014). Furthermore, robotics can quantitatively
assess users (Stienen et al. 2011) and have the potential
to systematically tailor the interaction to the user’s skill
or level of impairment. As a result, there is interest
in facilitating training and rehabilitation through forceful
interaction between robots and humans.

Numerous devices and control strategies have been
developed to support physical human robot interaction
(pHRI) and modulate it based on principles of motor
learning. Despite the development of novel hardware and
software to facilitate pHRI for training and therapy, there
are relatively few instances where robotics have been
used to significantly improve learning outcomes. Gains
are often modest (Prange et al. 2009; Mehrholz et al.
2013) or equivalent to a similar amount of human-mediated
training (Lo et al. 2010; Veerbeek et al. 2014; Dobkin

and Duncan 2012). The success of robot-mediated therapy
is highly dependent on the principles used to design
robotic assistance and the corresponding features of training
interfaces, which vary greatly from one implementation to
another.

Traditional robotic control techniques have been designed
to minimize error with respect to a desired trajectory
or produce motions that minimize an objective function
consisting of both error and effort components. Early
rehabilitation robotics used a recorded trajectory from
a human expert or healthy reference and ‘replayed’ it
with position controllers (Colombo et al. 2000; Burgar
et al. 2000). Alternatively, the reference was generated
from an optimal task completion, such as minimum jerk
reaching in the upper limb (Hogan 1984; Flash and Hogan
1985). Robotically assisting subjects to perform these
normative movements has led to moderate improvements in
training outcomes compared to unassisted practice (Kahn
et al. 2006; Bluteau et al. 2008; Marchal-Crespo and
Reinkensmeyer 2008). This type of guidance has been
especially effective when the learned task is difficult relative
to the subject skill level (Guadagnoli and Lindquist 2007)
or the subject has a high level of impairment (Cesqui
et al. 2008). However, haptic guidance can actually interfere
with learning (Schmidt and Bjork 1992; Winstein et al.
1994; Powell and O’Malley 2012) or lead to ‘slacking’ by
the user (Reinkensmeyer et al. 2007; Marchal-Crespo and
Reinkensmeyer 2009). When learning a task, the central
nervous system encodes not only a sequence of joint
positions but also a feedback control loop—making motor
output necessary to learning (Shadmehr and Mussa-Ivaldi
1994). So while it is necessary for robotic trainers to be able
to assist subjects in completing the task, especially when
subjects have limited ability or skill, too much support—
leading to user passivity—is not conducive to learning.

Rather than assisting subjects with task completion, some
training paradigms act antagonistically to task goals, making
aspects of the task more difficult and allowing failure.
For instance, robotics have been used to introduce random
noise-based disturbances into training. Supported by studies
demonstrating that mistakes or errors actually enhance
learning (Thoroughman and Shadmehr 2000), training
with this approach has been shown to improve training
outcomes compared to progressive guidance strategies and
unassisted practice (Lee and Choi 2010). Perturbation-
based training could also improve the robustness of robot-
mediated training—in human-robot teaming training with
perturbations led to increased performance across task
variants (Ramakrishnan et al. 2017). Alternatively, control
strategies that explicitly amplify errors have been developed
and have also been shown to improve motor learning in
the upper limb (Emken and Reinkensmeyer 2005; Patton
et al. 2006b; Emken et al. 2007), though the effects
may be transient or may not generalize to other similar
tasks (Patton et al. 2006a). Interestingly, error amplification
is most effective when the users are not novices (Milot
et al. 2010), suggesting that this antagonistic strategy is
not appropriate for unskilled or highly impaired individuals.
Finally, another approach is to allow users to make errors
rather than enhancing them explicitly. Simply enabling
kinematic variability has proved to be more effective than
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enforcing strict repetitive movement patterns (Lewek et al.
2009). As a result, impedance-based shared control has been
widely adopted in pHRI to increase kinematic variability and
allow users to make errors (Koenig and Riener 2016).

While shared control approaches are often implemented
to augment user inputs such that task performance is
optimized (Dragan and Srinivasa 2013), it does not
necessarily improve training outcomes (O’Malley et al.
2006). The efficacy of blending control signals of a human
expert (Khademian and Hashtrudi-Zaad 2011) or robotic
teacher (Pérez-del-Pulgar et al. 2016; Rakita et al. 2018)
with students through shared control varies depending on the
task and mode of assistance (Powell and O’Malley 2012).
Generally, shared control for training is considered most
effective when the robot provides only as much assistance
as is necessary based on estimates of user intent (Li and
Okamura 2003; Yu et al. 2005), motor contribution (Riener
et al. 2005), or other performance heuristics.

Assist-as-needed control schemes are implemented by
dynamically updating the relative contributions of the robot
and human. Updates to the relative contributions are made
by adjusting the gains of an impedance controller based
on measured outcomes (Krebs et al. 2003; Pehlivan et al.
2016), introducing forgetting factors that adjust robot effort
according to a schedule (Wolbrecht et al. 2008; Emken et al.
2008), or implementing a repulsive potential field at the
boundary of a virtual tunnel around a desired path (Duschau-
Wicke et al. 2010).

Numerous implementations of assist-as-needed con-
trollers have been developed for robots that support gait
rehabilitation in exoskeletons (Duschau-Wicke et al. 2010),
provide end-point guidance for upper limb tasks (Ferraro
et al. 2003), offer support at anatomical joints in upper limb
exoskeletons (Wolbrecht et al. 2008), and enhance sports
training (von Zitzewitz et al. 2008; Rauter et al. 2010;
Marchal-Crespo et al. 2013) with mixed results.

Given that approaches at either end of the assis-
tive/resistive spectrum seem to be effective in some cases and
ineffective in other training scenarios, one might ask what
features of the interfaces discussed above create conditions
conducive to motor learning? One idea that is consistent
across training strategies is the need for user engagement and
active participation (Marchal-Crespo and Reinkensmeyer
2009), often accomplished by modulating the assistive or
antagonistic forces based on subject performance trial to
trial. However, it is still unclear how to best implement real-
time modulation. Literature suggests that it is necessary for
platforms to be capable of assisting subjects in completing
the desired task, especially when the user is unskilled. Yet,
allowing or enhancing errors is critical to learning. In this
paper, we describe a novel shared control paradigm that,
through an initial human subject study, we find to be success-
ful in improving learning. We then explore the features of the
shared control paradigm in the context of previous findings.

3 Prior Work
An algorithm for filtering control inputs was proposed
in (Tzorakoleftherakis and Murphey 2015) for noise driven
swing-up problems based on the hypothesis that noisy inputs
can be a rich source of control authority if filtered in a

Figure 1. Robotic responses of hybrid share control on the
example of a hand pushing a mass. The robot filters user input
by physically accepting or rejecting it. When a user action is
accepted, the robot admits the force. When a user action is not
accepted, the robot rejects it by applying an equal and opposite
force.

meaningful task-specific way. This filter was implemented
by combining a controller and a filter into a single
computational unit that cancels noise samples not driving the
system towards a desired control direction. In (Fitzsimons
et al. 2016) and (Kalinowska et al. 2018), we modified
this algorithm to allow for filtering of user input. User
inputs were either accepted or rejected based on the criteria
described in Sections 4.2.1 and 4.2.2. When they were not
accepted, they may be either rejected by the automation (as
shown in Figure 1) or replaced with input prescribed by a
control policy. In the experiments described in this work
and our previous work, subject inputs were not replaced—
allowing users to fail both allowed us to evaluate the
participants’ success rate during trials with and without the
shared control and to evaluate the training effect of the
kinesthetic feedback provided to them.

Previous experiments on a touchscreen platform in
Fitzsimons et al. (2016) represented an infinite actuation
scenario for the filter, since user inputs were able to be
completely rejected in software. A haptic stylus (Phantom
Omni by Sensable) on the other hand provided kinesthetic
feedback, but did not have sufficient power to do more
than weakly resist user inputs. We found that both
implementations were able to effectively assist subjects in
swinging up a cart-pendulum system compared to their
baseline performance. The touchscreen platform indicated
significantly higher success rates and lower time to success
for the swing-up task. Although the assistance mode on the
haptic platform did increase the success rate, there was no
significant difference in time to success between the baseline
and the assistance mode. This was likely due to the fact that
the haptic interface did not generate enough force to strictly
enforce the filter’s acceptance criterion.

Therefore, we realized the mechanical filter on a higher
power robotic system described in Section 4.3. Preliminary
results of this work have been discussed in (Kalinowska et al.
2018), where we noted a modest training effect compared
to controls with unassisted practice as well as a low, but
significant correlation between the controller intervention
rate and the participant’s initial skill level. In this work, we
extend these results by evaluating the progression of subject
performance over time. We also present results using an
alternative acceptance criterion and assess the skill retention
of the trained group after one week.
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4 Methods

4.1 Hybrid Shared Control
The hybrid shared control algorithm works as follows. Given
a system and an operator, assume that a user input is
measured every ts seconds. The user input is assessed based
on one of the acceptance criterion described in Section 4.2—
roughly asking whether the user understands the task goal
or an optimal control strategy for task completion. When
the acceptance criterion is met, if the magnitude of the
user command is within the allowed limits, the command
is applied to the system. Otherwise, saturation may be
applied.1 On the contrary, if the criterion is not met, one
of two alternatives can be followed: a) the system input
can be set equal to zero (user command is “rejected”) or
b) the system input can be set equal to the nominal control
value. The latter case would result in potentially never-failing
interfaces, serving both training and safety purposes. Note
that in our experimental setup we followed the first approach;
the rationale behind this choice is that being allowed to fail
in the task should provide clear indications as to whether
the filtering algorithm has any effect on performance. When
inputs were rejected in these experiments, a force equal and
opposite to the force of the user is exerted at the end-effector.
This results in the interface being transparent when user
inputs are accepted or velocity being held constant when
inputs are rejected. This process is illustrated in Algorithm 1.

Algorithm 1 Hybrid shared control algorithm

Initialize current time t0, sampling time ts, time horizon
length T , final time tf , input saturation usat and angle
tolerance γ.

1: while t0 < tf do
2: Infer user input uuser from sensor data
3: Calculate the quantities in eq. 2 or 3 for time T .
4: if Filter Criterion is True then
5: if |uuser| < usat then
6: Use uuser as current input, ucurr = uuser
7: else
8: Apply saturated user input ucurr = usat

9: else
10: Completely “reject” uuser (ucurr = 0)

11: Apply ucurr for t ∈ [t0, t0 + ts]
12: t0 = t0 + ts
13: end while

4.2 Acceptance Criteria
In this paper, we use two criteria. Both are reasonable
interpretations of the hybrid philosophy of shared control.
The Mode Insertion Gradient (MIG) assumes the user
must be generating descent directions while the Optimal
Controller Inner Product (OCIP) insists that the user agrees
with the optimal control. Because of this difference, MIG is
more relevant to assessing how well a person understands
a task in the moment, whereas OCIP is more relevant to
whether the person is being taught by the optimal control
solutions we compute. Naturally these two interpretations
have considerable overlap, but in different situations the

choice may matter. For instance, a driver-assist wheelchair
may need to interpret the quality of motion control a person
is providing without having an explicit need to train the
user and potentially having reason to believe that the user
needs flexibility in his/her implementation (leading to MIG
being a better choice). On the other hand, technologies
geared toward rehabilitation may want to steer a person’s
motor control towards a normative set of expected solutions
(leading to OCIP). The practical consequences of these two
interpretations of acceptance is that in the MIG study the
acceptance criteria was met much more frequently and user
actions were rejected less often than in the OCIP study.

4.2.1 Mode Insertion Gradient Criterion. The mode
insertion gradient dJdλ is most often used in mode scheduling
problems to determine the optimal time τ to insert control
modes from a predetermined set (Egerstedt et al. 2006;
Wardi and Egerstedt 2012; Gonzalez et al. 2010; Ansari and
Murphey 2016; Caldwell and Murphey 2016). In these cases,
it gives an estimate of the sensitivity of the cost function to
the timing of a switch from one control mode to another.
Therefore, a negative MIG at a specific time indicates that a
mode switch at that time would decrease the cost compared
to not switching modes. Often, the goal is to choose an
application time when the MIG is most negative, to optimize
the benefit of switching control modes. Here we use the mode
insertion gradient as a measure of the sensitivity of the cost
to a change from the nominal control, u1, to a particular user
input, u2. Instead of using the MIG to decide when to switch
modes, we use it to decide whether to switch modes and
allow user input. To aid in this evaluation, we consider the
MIG over the entire time horizon T and thus use the integral
of it as our evaluation criterion. Our approach to calculating
the MIG criterion is outlined below.

The mode insertion gradient is usually defined as

dJ

dλ
(τ) = ρ(τ)T [f(x(τ), u2(τ))− f(x(τ), u1(τ))] (1)

for a system with dynamics

ẋ(t) = f(x(t), u(t), t) = g(x(t)) +B(x(t), t)u(t),

where ẋ(t) is linearly dependent on the control u. In (1), state
x is calculated using nominal control, u1, and ρ is the adjoint
variable calculated from the nominal trajectory x(t),

ρ̇ = −∇l1(x)−Dxf(x, u1)
T ρ,

where l1(x, t) is the incremental cost and ρ(t0 + T ) =
∇m(x(t0 + T )) is the terminal cost. Moreover, in the
work presented here, we define the nominal control, u1, to
be equivalent to the calculated controller action (u1(t) =
ucontroller), and we define u2 with the piece-wise function
below,

u2(t) =

{
uuser t ≤ t0 + ts
u1 t0 + ts < t ≤ t0 + T

where ts is the sampling time, T is the time window over
which we are evaluating system behavior, and uuser is a
user input recorded at current time t0. The control mode,
u2, is defined by a combination of user input at current
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time t0 and actions from an optimal controller over time T
into the future2. It is worth noting that u1 is not a schedule
of actions that is precomputed ahead of time, instead we
calculate the best sequence u1 every time step ts based on the
previously taken action and current state of the system. The
current user input, uuser is not included in the computation
of u1. In turn, the action sequence u2 is defined by a
combination of user input at current time t0 and newly
calculated actions from an optimal controller over time T
into the future. This gives unique flexibility to the criterion
and grants the user more control authority over the joint
system, because any user action that could be corrected for
by a future optimal action or sequence of optimal actions
without destabilizing the system during the time window
T will be admitted. Even suboptimal user actions will be
allowed. The MIG quantitatively represents the benefit or
disadvantage of allowing the user to push the system in the
way that they are currently trying to move it.

When using MIG as an evaluation criterion, we calculate
the integral of the mode insertion gradient over a time
window T into the future∫ t0+T

t0

dJ

dλ
(t)δt, (2)

to evaluate the impact of user control u2 on the system over
time T 3. When negative, the integral indicates that u2—
the user input—is a descent direction over the entire time
horizon, which can be shown by evaluating the change in cost
due to a control perturbation u2 − u1. Thus, the MIG integral
can serve as the basis for evaluating the impact of a current
user action on the evolution of a dynamic system over a time
window into the future and has proven in our experiments to
be a balanced assessment criterion—significantly improving
performance while only minimally rejecting user actions.

4.2.2 Optimal Controller Inner Product Criterion. The
optimal controller inner product (OCIP) criterion works in
algorithm 1 by computing the value of a nominal controller
uc based on the current state of the system. In this study,
we use a model predictive controller described in Ansari and
Murphey (2016), and when the system is near equilibrium,
we switch to a linear quadratic regulator (LQR). Note that
any controller could be used, but it should be capable
of driving the system by itself according to the desired
specification. Calculating the inner product between the user
input and the nominal controller establishes whether or not
the two vectors are in the same half plane (e.g. 〈uc, uuser〉 >
0). One can further specify that the user input vector must lie
within a cone near the nominal control vector by specifying
a maximum angle γ between uuser and uc. If the user input
lies in the same half plane as uc and within γ radians of uc,
then the filter does nothing. This acceptance criterion is given
by,

〈uc, uuser〉 > 0 and |φ| ≤ γ. (3)

If the inner product between the control and the user
command vector is positive, and the corresponding angle
of the vectors is small, then the effect of user input on the
system should be similar to that of the control vector. If the
user input is not in the same half plane as uc or not within γ
radians of uc, the input is rejected.

Figure 2. The New Arm Coordination Training 3D (NACT-3D)
device provides haptic feedback in three dimensions to simulate
a specified inertial model via admittance control. A force-torque
sensor at the end-effector provides input to the admittance
control loop. During this experiment, high stiffness virtual
springs were used to restrict user motion in the z-direction while
allowing them to move freely in the x-y plane. The display
(bottom left) provided real-time visual state feedback of the
cart-pendulum system.

4.3 Experimental Platform
All subject data was collected using the New Arm
Coordination Training device (NACT-3D) shown in Figure 2.
The NACT-3D is a powerful haptic admittance-controlled
robot that can be used to render virtual objects, forces, or
perturbation in three degrees of freedom. This device is
similar to that described in Stienen et al. (2011) and Ellis
et al. (2016), to quantify upper limb motor impairments and
provide a means to modulate limb weight support during
reaching. While in use, the subject is seated in a Biodex chair
connected to the base of the NACT-3D with their arm secured
in forearm-wrist-hand orthosis. The NACT-3D is capable of
exerting forces at this interaction point between the user and
the robot in the x, y, and z directions only. The impedance
control is updated at 1000 Hz.

The NACT-3D can move its end effector within a
workspace defined both by its design limits (a radius of
approximately 0.6m around the participants shoulder in the
half plane in front of the participant’s chest) and safety limits
set by the investigators. The splint can rotate passively but
no torque can be exerted by the robot. At the point where
the splint is mounted, a force-torque sensor measures the
subject input which is fed back to the admittance controller.
The peak push-pull force that can be exerted by the device of
the device at the end effector is approximately 4.7 kN. The
force measured at the end effector is sent to a host computer
for use in the assistance algorithm to compare the user input
to the control policy and perform the filter update at a rate of
60 Hz. In Figure 3, f(s) is the subject control input which is
used in the filtering algorithm. At start up, the haptic model
is set such that the model of the end effector accounts for
the mass of the subject’s arm as well as an inertia parameter
defined by the investigator.

During testing, a display provided real-time visual state
feedback to the user about the cart-pendulum system s/he
was trying to invert. High stiffness virtual springs in the
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haptic model were used to restrict user motion to a horizontal
plane corresponding to the path of the cart in the virtual
display. When user inputs met the criterion being used, they
were accepted and the robot behaved according to the control
scheme described in Figure 3. When user inputs did not
meet the criterion for acceptance, the user input f(s) was
ignored by the admittance controller, such that the robot
maintained its velocity at the time of rejection. Although
the device was capable of replacing the user input with an
input prescribed by an optimal controller, we chose to simply
reject user actions. In this way, we provide feedback only by
corrections without demonstrating or guiding the user in the
correct action.

Figure 3. A voluntary force f(s) is measured at the robot’s
end-effector using a six degree of freedom force-torque sensor
(JR3) and passed through a model M(s) that determines the
velocity vr(s) the robot should move with. The reference
velocity is tracked by the low level velocity controllers of each
motor drive. The human also delivers involuntary impedance
forces due to movement, given by dynamics transfer H(s).
Acceleration information is fed back as a pseudo-force for extra
inertia reduction of the system.

4.4 Experimental Task
Users were tasked with controlling a simulated two-
dimensional cart-pendulum system, which they were
instructed to swing up to the unstable equilibrium (the system
was initially resting at the downward stable equilibrium).
The equations that describe the underactuated cart-pendulum
system shown bottom left in Figure 2 are given by:

ẋ = f(x, u) =


θ̇

g
l sin θ + u cos θ − b

ml2 θ̇
ẋc
u

 (4)

where the state vector x consists of the angular position
and velocity of the pendulum and the position and lateral
velocity of the cart, x = [θ, θ̇, xc, ẋc], the input u is the lateral
acceleration of the cart, g is the acceleration due to gravity,
b is the damping coefficient, l is the pendulum length and m
the mass at the tip.

Users kinematically controlled the cart acceleration (and
thus position) by moving their arm from left to right in the
horizontal plane subject to the constraints of the admittance
controller outlined in Figure 3. To avoid confusion associated
with conflating the task-related forces with forces generated
by the assistance algorithm (Powell and O’Malley 2012),
no haptic feedback related to the system dynamics was

displayed to the user during either nominal task execution
or in addition to the assistance. In both the assisted and
unassisted cases, users had to rely solely on visual state
feedback to understand the system dynamics.

4.5 Sample Response
The mechanical filtering imposed by the robotic platform
forces changes in the user input. Figure 4 shows a sample
response of user inputs in assistance mode. Shortly before
t = 4 s, we see an example of a rejected user action.
Although the user input (gray) is a positive acceleration, the
filtered input (red) is zero, and the velocity of the cart (green)
is held constant. The optimal control signal (blue) indicated
that a negative acceleration should be applied, but this was
not used to replace the user input nor was it communicated
to the user. At around t = 3.5 s, the user attempts a negative
acceleration, and the prescribed optimal controller is also
negative. Under the OCIP criterion, this action is allowed
and the cart velocity decreases. This demonstrates how the
mechanical filter can effectively yield to skilled users while
assisting unskilled users.

-4

-2

0

2

4

0 5 10 15

x (m) dx(m/s) th(rad)θሶ𝑥𝑥

-25

-15

-5

5

15

25

0 5 10 15

time(s)

Optimal Control (m/s ) User Input (m/s ) Filtered Input (m/s )

time(s)

2 22

Figure 4. Sample response of a subject using the NACT-3D
with the OCIP criterion. The NACT-3D is able to directly shape
user input. We can see that even relatively large user inputs
(gray) can be reduced to zero in the filtered input (red). Top: the
states of the cart-pendulum system. The subject kinematically
controls the cart position xc (and ẋc) through the cart’s lateral
acceleration. We see the subject is able to stabilize the
pendulum for 5 s. Bottom: The reference signal and user input
used in (3) to generate the filtered input that drives the system.

Unlike the haptic stylus used in Fitzsimons et al.
(2016), the robotic platform used in the studies discussed
in this paper was capable of fully rejecting the physical
motions of the subjects because of its underlying control
architecture and sufficient actuation capabilities. While the
haptic stylus, relied on users to interpret the feedback
and correct their motion, the device described below in
Section 4.3 could actively correct motion while giving
feedback and did not rely so heavily on the subjects
interpretation of the haptic feedback. This allowed us to
update the mechanical filter at a higher rate (60 Hz-100 Hz)
than in the previous implementation (10 Hz), which is part of
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why the improvements in performance are much greater on
this device. In the trial shown in Figure 4, the user stabilizes
the pendulum at the unstable equilibrium at t = 9 s and
maintains that configuration for 5 s.

4.6 Experimental Protocol
Subjects used an upper limb robotic platform (NACT-
3D) as an interface to control a simulated cart-pendulum
system with state vector x = [θ, θ̇, xc, ẋc] and horizontal
acceleration of the cart as control input. During experimental
trials, the user’s goal was to invert the pendulum to its
unstable equilibrium. User input was inferred from a force
sensor at the robot’s end-effector.

At the beginning of each session subjects were seated and
secured in a Biodex chair and their left arm was secured
in the orthosis on the NACT-3D (Figure 2). The system
and task was demonstrated to them at the start of the
testing using a video of a sample task completion. Subjects
were instructed to attempt to swing up the pendulum to
the upward unstable equilibrium and balance there for as
long as possible. Subjects were instructed to continue to try
to do this until the 30 second trial was over even if they
succeeded at balancing near the equilibrium more than once.
Depending on the study, subjects performed sets of 30 trials
with short breaks in the same session or in sessions scheduled
approximately one week apart as shown in Figure 5.

with OCIP 

filter

with OCIP 

filter

with MIG 

filter

OCIP Group 1

OCIP Group 2

OCIP Control

MIG Group 1

MIG Control

Week 1 Week 2

Set 1 Set 3Set 2

Figure 5. Each rectangle represents a set of 30 trials. MIG
study participants completed all sets on the same day. OCIP
participants completed sets one week apart.

Subjects were recruited locally, and had to be healthy,
able-bodied adults (in the age range of 18 to 50) with no prior
history of upper limb or cognitive impairments. Only right-
hand dominant participants were accepted into the study, and
each subject performed the task with their left limb. All study
protocols were reviewed and approved by the Northwestern
University Institutional Review Board, and all subjects gave
written informed consent prior to participation in the study.

4.6.1 MIG Study. Twenty-eight subjects (9 males and 19
females) consented to participate in the MIG study. All
subjects in the MIG study completed three sets of thirty
30-second trials with short breaks between sets. Upon
enrollment, subjects were randomly placed into either a
control (n = 10) or training group (n = 18). During the
second set, feedback in the form of a filter using the MIG
criterion was engaged for the training group, while the
control group completed each of the three sets without any
feedback. Again, each user did three sets of thirty trials: set
1 (both groups: no feedback), set 2 (control: no feedback,

training: feedback in the form of a mechanical filter using
MIG), set 3 (both groups: no feedback).

4.6.2 OCIP Study. Fifty-three subjects (17 males, 36
females) consented to participate in this study. Each subject
completed 2 sessions being approximately one week apart.
Upon enrollment in the study, each subject was placed into
1 of 3 groups. If placed in the training group (n = 20), the
subject completed the first session with the OCIP filter and
received no assistance in the second session. If a subject was
placed in the non-training group (n = 20), they performed
the task without assistance in the first session and used the
OCIP filter in the second session. Finally, a control group
(n = 13) performed the task without assistance in both the
first and second session.

4.7 Performance Measures
The full state and user inputs were recorded in each trial and
were used to calculate task-specific performance measures
as well as more general measures such as error. The task-
specific performance measures used to evaluate subjects
in both studies is predicated on a notion of success. The
definition of success that was used was based on the region
of attraction for a linear quadratic regulator capable of
stabilizing the system dynamics defined in the experiments.
A trial was considered successful when a subject reached
an angle of ±0.15 rad and angular velocity of ±0.6 rad/s.
This definition of success was used to determine the time
to success of the users in each experiment. In addition, if
a subject was successful, the total time spent at the angle
and angular velocity defined as success was recorded as the
balance time. When users were successful multiple times
in the same trial, time spent in the balance region was
cumulative.

While these outcome-based measures provide clear
indication about whether or not users could meet task goals,
they neglect the behavior of users away from the goal state.
Therefore, we use two measures—error and ergodicity—that
use the full trajectory data to characterize task performance.
The root mean square (RMS) error of each trajectory
generated by the users was calculated with respect to the
desired position in an inverted unstable equilibrium (zero-
vector of the states). RMS error was normalized by the
RMS error of a constant trajectory at the stable equilibrium,
equivalent to the error of the user not moving from the initial
conditions. Finally, we also compared the experimental
conditions through an analysis of the spatial distribution
of trajectories that we observe under each condition. For
instance, in the histogram of states recorded for all subject
trajectories (Figure 6), one can see that trajectories in which
subjects received assistance have high density values near the
goal state. To quantify the comparison of the distributions,
we compute a metric on the ergodicity (Mathew and Mezić
2011; Miller et al. 2016) of each trajectory with respect
to a Dirac delta δ(x− s) function centered at the unstable
equilibrium (θ, θ̇) = (0, 0). The ergodic measure captures
how well the time averaged statistics of the trajectory match
the statistics of the reference distribution. The value of
this metric was determined by calculating the weighted
distance between the Fourier coefficients of the trajectory
and those of the distribution. The ergodic metric gives us the
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Figure 6. A histogram of all the trajectories recorded in the OCIP study demonstrates how the statistics of unassisted and assisted
trajectories differ from one another. The histogram of unassisted trajectories (left) has its highest density at θ = ±π which is the
farthest point from the goal state. The rest of the distribution is diffuse over the state space. Although the histogram of the assisted
trajectories (right) also has a high density at θ = ±π, the distribution is not as diffuse as that of the unassisted trajectories. There
are bands of high density spreading outward form the goal state (θ, θ̇) = (0, 0). The spatial statistics of the assisted trajectories are
more similar to the reference distribution, because there is a high density at and around the goal state. This outcome is captured by
measuring the distance from ergodicity of the trajectories in each group with respect to the reference distribution.

distance from ergodicity, such that trajectories which were
highly ergodic had lower ergodicity than those that were less
ergodic.

The controller intervention was measured as the percent of
rejected actions (PRA). PRA measured the fraction of user
inputs that were rejected, where we defined an action to be a
non-zero user input.

4.8 Statistical Analysis
The MIG experiment consisted of 30 baseline trials, 30 trials
with or without the MIG filter, and 30 trials post-training
for a total of 90 trials. These were grouped into blocks of 5
trials to evaluate subject performance over time. The analysis
consisted of two-factor (block and group) repeated measures
ANOVA tests, using the baseline and post-training data only.
The ANOVA’s were used to compare the effect of the MIG
filter and unassisted practice on each of the performance
measures. Trials from set 2 are removed from the analysis
to avoid including the assistance itself as a factor in the
experiment. In the OCIP study, subjects trained with the filter
received no prior exposure to the task without assistance.
Student’s t-tests were used to evaluate the difference between
the week 2 performance of the trained group and the week 2
performance of the control group.

The relevant features of the hybrid shared controller
were evaluated statistically. First, the ability of the shared
controller to assist subjects in completing the task was tested
in each study. In the MIG study, this was done by comparing
the experimental group to controls with an equivalent amount
of practice using a two-sample t-test. The effect of the
OCIP criterion as an assistive controller was tested in a
counter-balanced fashion using paired two-sample t-tests on
all performance metrics. Second, the sensitivity of the shared
controller to the initial skill of the users was evaluated by
performing Peason’s R correlation tests between the level
of controller intervention and the performance of users in
their first set of unassisted trials. Finally, the assist-as-needed
feature of the shared controller was shown by testing the

correlation between the level of controller intervention and
the current performance of subjects.

5 Results
The results were reported as follows. First, the training
effect of each study was statistically tested in Section 5.1.
The results demonstrated that training with the hyrbid
shared controller increased subject performance in later
trials within the same session (Section 5.1.1) and in a
session one week after training (Section 5.1.2). An analysis
of the hyrbid shared controller was performed to test for
three characteristics of effective pHRI. In Section 5.2, the
performance improvement made while the criterion was
engaged was evaluated in both the MIG study and the
OCIP study. In Section 5.3 and 5.4, the correlation of the
percent of rejected actions with the initial skill and current
performance are reported to evaluate the sensitivity of the
shared controller to user skill and its ability to assist-as-
needed, respectively. In each section the relevant statistics
are reported first, followed by a summary and interpretation
of the results.

5.1 Training Effect
The effectiveness of the filter as a training tool was assessed
in both experiments. In the MIG study, we consider only skill
acquisition within a single session. We assess the retention of
skill over the course of one week in the OCIP study.

5.1.1 MIG Study: Skill Acquisition. Two-factor repeated
measures ANOVAs were used to assess the effects of the
group (between-subjects) and set (within-subjects) on all
performance measures listed in Section 4.7. The training
group and control group were evaluated based on the baseline
trials (set 1) and the post-training trials (set 3) only. Set 2 was
left out of the ANOVA, so that effects of the assistance itself
would not be measured in the analysis. In order to assess
how subject performance evolved over time, the baseline and
post-training sets were analyzed using blocks containing five

Prepared using sagej.cls



Fitzsimons et al. 9

5 10 15
Block

0.55

0.6

0.65

0.7
Er

ro
r

Set 1 Set 2 Set 3

5 10 15
Block

14

16

18

20

22

24

26

Ti
m

e 
to

 S
uc

ce
ss

Set 1 Set 2 Set 3

2 4 6 8 10 12
0.6

0.62

0.64

0.66

0.68

0.7

Er
ro

r

Week 1 Week 2

Trained
Control

2 4
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Er
go

di
ci

ty

Week 1

Figure 7. The MIG study showed that subjects improved with practice in all sets regardless of training group, however, there was a
significant interaction effect between training group and block when ANOVAs were applied to three of the four performance metrics.
This suggests that although subjects in each group started around the same performance level, the trained group attained a higher
level of performance than the the control group during the post-training trials. Note that the set 2 performance (gray) was not
included in the ANOVA to avoid measuring effects of the assistance itself.

individual trials. Therefore, there were 6 blocks in each set
as shown in Figure 7.

The factorial ANOVA of the balance time revealed
that block was the only significant factor (p < 2×
10−16, F (11, 286) = 10.775). The main effect of group and
interaction effect of group and block were not significant
for balance time (p > 0.05). When an analysis of variance
was performed on the time to success, again, the main effect
of block was significant (p = 3.81× 10−15, F (11, 286) =
9.848) and the main effect of group was not significant (p =
0.533, F (1, 25) = 0.399). However, the interaction effect of
group and block was significant (p = 0.0135, F (11, 286) =
2.222). The control and trained group performed similarly
in the baseline trials. The time to success decreased even
before the training set (Figure 7). However, the control group
essentially plateaued during the training set and saw large
fluctuations in the time to success during the post-training
trials. The time to success of the trained group decreased
during training and was maintained in the post-training trials.

The group also was not a significant factor affecting the
RMS error (p = 0.223, F (1, 25) = 1.560), but main effect
of subset (p < 2× 10−16, F (11, 286) = 20.620) and the
interaction of group and subset (p = 0.004, F (11, 286) =
2.575) were significant. When the error of the control group
and trained group was plotted over time (Figure 7), the
control group error decreased initally but leveled off. The
error of the trained group continued to decrease during
training and in the post-training trials.

When the distributions of the trajectories were compared
using the ergodic metric, the significant factors were the
subset (p < 2× 10−16, F (11, 286) = 18.311) and the inter-
action between group and subset (p = 0.030, F (11, 286) =
1.983). The main effect of group was not significant (p =
0.294, F (1, 25) = 1.151). The progress of the ergodic met-
ric over time was similar to that of the RMS error.

The results of the ANOVA of each of the performance
measures showed that subset was a significant factor—
implying that regardless of the training in set 2, all subjects
performed better in later sets than in their initial sets. The
significant interaction effect observed in three out of the

four metrics demonstrates that while the subjects started at
the same performance level, subjects in the trained group
attained a higher performance level than the control group.

5.1.2 OCIP Study: Short-term Retention. The effect
of training was assessed by comparing the week 2 session
of the trained group to the week 2 session of the control
group. The two groups were not significantly different in
terms of the task-specific measures of success. However,
the trained group had significantly lower RMS error, and
the distributions of the trained group’s trajectories were
more similar to the reference distribution, resulting in
a much lower ergodic measure than the control group.
A two-sample t-test was performed on the task specific
performance measures, finding no difference between
trained group and untrained group in terms of their time
spent balanced (p = 0.1687, t(988) = 1.378) and time to
success (p = 0.1935, t(988) = 1.301). The two-sample
t-test of the RMS error showed a significant difference
between the trained (mean = 0.621, SD = 0.058)
and control (mean = 0.629, SD = 0.061) groups
(p = 0.0499, t(988) = −1.963). The t-test of the
ergodic metric also showed a significance difference
(p = 2.266× 10−4, t(988) = −3.701) between the trained
group (mean = 0.705, SD = 0.177) and the control
group (mean = 0.751, SD = 0.207). Although subjects
who trained with the OCIP criterion were not successful
more often than the control group, they did spend a higher
proportion of their time near the goal state as can be seen by
the histogram of their trajectories shown in Figure 8. These
results suggest that subjects learned more and retained
that skill one week after training when they trained with
assistance rather than simply practicing the task unassisted.

The progress of the two groups over the second session
(Figure 9) was analyzed further by performing mixed design
ANOVAs on the training group (between participants) and
block (within participants) using all four measures.

The balance time of the control group and the trained
group in the second session was analyzed with a 2 (training
groups) x 6 (blocks) mixed design ANOVA, which showed
no significant main effects or interactions effects. The main
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(a) The density function of trained group trajectories
subtracted from the control trajectories density.

(b) Control trajectories density function subtracted
from the post-training trajectories density.

Figure 8. Trajectories from Week 2 of the OCIP study showed that subjects who trained with the hyrbid shared controller spent
more time near the goals state (θ, θ̇) = (0, 0) than subjects who practiced unassisted. On the left, the week 2 control trajectories
have higher densities than the post-training trajectories at higher angular velocities as well as in bands near θ = ±π which is the
farthest angle from the goal state. The control trajectories also spend time near the goal state, but to a lesser extent. On the right,
the trained trajectories also have high density near θ = ±π, but there are large bands of high density in the region −1.5 ≤ θ ≤ 1.5
and −4 ≤ θ̇ ≤ 4. This suggests that the trained group’s motions were more consistent with the task goal—making the statistics of
the trained group closer to the spatial statistics of the reference Dirac delta distribution, so the ergodic measure of the trained group
is lower than that of the controls.

effect of training group was not significant F (1, 31) =
1.202, MSE = 1.25, p = 0.28, Cohen′sf = 0.08. The
main effect of block also was not significant F (5, 155) =
2.018, MSE = 0.44, p = 0.079, Cohen′sf = 0.11, nor
was the interaction of training and block significant
F (5, 155) = 1.05, MSE = 0.23, p = 0.39, Cohen′sf =
0.08.

The mixed design 2 x 6 ANOVA design was also applied
to the time to success, and the main effect of training group
was not significant F (1, 31) = 0.334, MSE = 103.4, p =
0.567, Cohen′sf = 0.05. The main effect of block was not
significant either F (5, 155) = 1.34, MSE = 66.32, p =
0.25, Cohen′sf = 0.09. The interaction effect of block
and training group also was not significant F (5, 155) =
1.34, MSE = 66.50, p = 0.25, Cohen′sf = 0.09.

The same mixed design ANOVA was used to analyze
the RMS error in each trial. The main effect of block
was significant F (5, 155) = 4.336, MSE = 0.011, p =
0.001, Cohen′sf = 0.19, but the main effect of training
was not significant F (1, 31) = 0.76, MSE = 0.035, p =
0.39, Cohen′sf = 0.15. The interaction effect of training
group and block also was not significant F (5, 155) =
1.61, MSE = 0.004, p = 0.16, Cohen′sf = 0.12.

The analysis of the ergodic metric using the mixed
design ANOVA revealed a significant main effect
of block F (5, 155) = 2.88, MSE = 0.08, p =
0.0163, Cohen′sf = 0.15, and a significant interaction
effect of block and training group F (5, 155) =
2.33, MSE = 0.06, p = 0.045, Cohen′sf = 0.14.
The main effect of training was not significant F (1, 31) =
1.056, MSE = 0.49, p = 0.312, Cohen′sf = 0.17.

In Figure 9, the control group performed worse at the
beginning of the second session that it did at the end of
the first session, and their performance increased in terms
of error over the course of the session. The trained group

also improves moderately during the second session. The
ANOVA of the ergodic metric is also able to detect the
significant improvement during the second session by the
control group as well as the interaction effect of group and
training. This interaction is a result of the trained group
performing better under the ergodic metric at the beginning
of the second session and maintaining that performance,
while the control group eventually reached the same level
of performance. Training with the OCIP criterion in week 1
speeds learning, and skill is retained after one week though
the improvements due to unassisted practice are not retained.

5.2 Task-based Assistance
We evaluate the ability of the hybrid shared controller to
assist subjects in completing the task while it is engaged.
In the MIG study, we compare the the control group to
the group recieving assistance during their second set of
trials. In the OCIP study, the order in which subjects
received assistance was counterbalanced, such that subject
performance in the assisted session was compared to the
same subject’s performance in the unassisted session.

5.2.1 MIG Study. Comparisons between the control and
experimental groups are shown in Figure 10. Two-
sample t-tests showed that there was no significant
difference between the control group (n = 10) and
experimental group (n = 18) baseline performance in
terms of their balance time (p = 0.178, t(793.22) =
1.35), time to success (p = 0.9497, t(644.23) = 0.063),
error (p = 0.411, t = 749.28 = −0.822), or ergodicity (p =
0.507, t(711.17) = −0.6631). During the training set (set
2), the experimental group (mean = 2.36, SD = 3.47)
maintained the pendulum in the balanced position for
significantly longer (p = 7.674× 10−8, t(832.55) = 5.42)
than the control group (mean = 1.37, SD = 1.78). The
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Figure 9. The results of the OCIP study demonstrate that subjects trained in week 1 retain high performance levels in week 2 as
measured by RMS error and ergodicity. In the first 2 blocks of trials, the error and ergodicity of the control group are higher than that
of the trained group. The trained group retains their initial performance level, while the control group continues to
improve—eventually reaching the same level of performance as the trained group. It appears the feedback helped with retention
because the learning was more structured. Note that the performance measures in week 1 (gray) were not used in the statistical
analysis to avoid measuring the effects of the assistance itself.

group receiving assistance also reached the balance position
more quickly than the group practicing the task without
assistance (p = 9.87× 10−5, t(666.93) = −3.9174), so the
experimental group (mean = 17.98, SD = 9.79) had a
lower time to success than the control group (mean =
20.58, SD = 8.84). The RMS error of the experimental
group (mean = 0.605, SD = 0.087) was also significantly
lower (t(753.59) = −5.925, p = 4.738× 10−9) than that of
the control group (mean = 0.636, SD = 0.066). Finally a
comparison of the trajectory distributions of the experimental
group in terms of ergodicity (mean = 0.398, SD =
0.157) to the distributions of the control group (mean =
0.441, SD = 0.131) showed that the filter was effective
able to effectively assist subjects in the task (t(707.63) =
−4.2435 p = 2.494× 10−5).
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Figure 10. The MIG filter study demonstrated that the filter
successfully assisted subjects in set 2 compared to controls.
Moreover, trained subjects outperformed the control group in
set 3. Note: error bars indicate standard error; significance is
indicated by ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

The two experimental groups performed similarly in their
baseline trials, but in set 2, the group using the filter
outperformed the control group in terms of balance time,
time to success, RMS error, and the ergodic metric. This
demonstrates that the hyrbid shared controller using the MIG
criterion meets the basic requirement of assisting subjects
with the task while in use.

5.2.2 OCIP Study. In the study of the OCIP criterion,
subjects were randomly placed into either a group who used
the shared controller in the 1st session (n = 20) or a group
who used the shared controller in the second session (n =
20). Therefore, the ability of the hybrid shared controller to
provide assistance was tested in a counterbalanced fashion.
Pairwise student’s t-test were used to compare performance
with and without the assistance of the filter on a subject by
subject basis. Subjects did not have significantly lower error
(t(1199) = −1.674, p = 0.0949) when using the OCIP filter
(mean = 0.626, SD = 0.102) compared to unassisted trials
(mean = 0.632, SD = 0.062). Under all other metrics,
subjects performed better on the day that they used the
OCIP filter compared to their performance on the day they
performed the task without assistance (p < 10−14) as shown
in Table 1. These results showed that the shared controller
with the OCIP criterion was able to help subjects complete
the task more frequently.

5.3 Hybrid Shared Control Adapts to Initial
Skill

We previously reported that there was a relationship between
participant skill level—estimated based on performance
in unassisted trials—and the frequency of controller
intervention in the MIG filter mode in Kalinowska et al.
(2018). In that case, we calculated the success rate of the 30
trials from set 1 to approximate user skill level. We then used
Percent of Rejected Actions (PRA) values from individual
trials in set 2 from the same users to identify the correlation.

The PRA of OCIP filter had a moderate correlation to
the initial skill of the subjects under all of our performance
measures. We evaluated the correlation between initial
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No Assistance Assistance
n = 40

Measure µ SD µ SD ∆µ t df p
Success Rate 0.348 0.163 0.792 0.182 0.444∗∗∗ 12.314 39 5.162× 10−15

Balance Time 0.191 0.411 1.661 1.913 1.47∗∗∗ 26.519 1199 2.541× 10−122

Time to Success 25.333 7.648 20.068 7.824 −5.265∗∗∗ −17.202 1199 1.926× 10−59

Error 0.632 0.062 0.626 0.102 −0.006 −1.674 1199 9.477× 10−2

Ergodicity 0.739 0.191 0.631 0.283 −0.108∗∗∗ −11.261 1199 4.954× 10−28

Table 1. The OCIP filter assisted subjects in completing the task more frequently and at a higher level of performance in four out of
five measures when subjects were randomly assigned to use the filter in either the first of second session. Paired two-sample
t-tests were performed in R (R Core Team 2016) comparing the unassisted and assisted trials of the 20 subjects receiving subjects
in the first session and the 20 subjects receiving assistance in the second session. Significant differences in means are indicated by
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Note that the degree of freedom (df) for success rate is 39 since there is only one rate per
subject.

Measure Test Sign r p
Success Rate − −0.235 5.898× 10−9

Balance Time − −0.427 < 2.2× 10−16

Time to Success + 0.2444 1.2898× 10−9

Error + 0.302 4.308× 10−14

Ergodicity + 0.282 2.078× 10−12

Table 2. There were moderate correlations between the initial
skill of the user and PRA of the OCIP filter in all measures
(p < 0.05). Pearson’s correlation tests were performed in R (R
Core Team 2016) by applying a linear model to the mean of
performance metrics first session and percent of action rejected
by the OCIP filter. The expected sign of the correlation
coefficient (r) for a shared control scheme that is sensitive to
the initial skill of the user is indicated in the column on the right.

skill of the untrained group (n = 20) who received no
assistance in week 1 and the PRA in individual trials of
the group when they did not receive assistance from the
filter in week 2. We found that there is again a significant
correlation between the initial skill of the users as measured
by the success rate and mean performance measures in
week 1 and the PRA of those subjects in week 2. In this
case, the correlation coefficients, shown in Table 2, were
slightly higher, indicating a moderate correlation between the
subject’s initial performance and the filter’s response to their
inputs. The correlations of each performance metric matched
the expected sign corresponding to a decrease in PRA in
response to an increase in the user’s initial skill. Although
the hybrid shared controller is not tailored to either high skill
or low skill users, it adapts to user skill level and could be
appropriate for both novices and expert users.

5.4 Hybrid shared control Assists-As-Needed
In addition to testing the relationship between the initial
skill of the user and the level of controller intervention,
the responsiveness of the controller to user performance
in the current trial was tested using Pearson’s product-
moment correlation. There were high significant correlations
between user performance within a single trial and the PRA
in that trial. These correlations and significance values are
reported in Table 3. The test sign indicated in the table
indicates the expected sign of the correlation coefficient
when the controller accepts more user inputs in response to
high user performance. Under each metric, the correlation
meets this expectation. This demonstrates that the robotic

assistance adapts in real-time to the needs of the users
without including high-level performance heuristics to tune
the relative contributions of the human and the robot.

Measure Test Sign r p
Balance Time − −0.616 < 2.2× 10−16

Time to Success + 0.602 < 2.2× 10−16

Error + 0.677 < 2.2× 10−16

Ergodicity + 0.706 < 2.2× 10−16

Table 3. The PRA of the OCIP filter was highly correlated with
the current performance of the users under all measures
(p < 0.05). Pearson’s correlation tests were performed by
applying a linear model to the performance measures in each
trial in the OCIP study and the PRA in the same trials. The
expected sign of the correlation coefficient (r) for a shared
control scheme that is sensitive to the performance of the user
is indicated in the column on the right.

6 Discussion
Despite the breadth of research, there are relatively few
instances where physical human robot interaction has
been significantly more effective than unassisted practice
or human-mediated training. In the work presented here,
experimental results demonstrate that our implementation
of a task-based hybrid shared control paradigm enhances
the effect of training compared to unassisted practice. On
average, subjects who trained with our robotic feedback
improved significantly more than subjects who trained
with an equivalent amount of unassisted practice. Based
on analysis of the spatial statistics of the post-training
trajectories, the training group was capable of more
controlled movement with significantly more time spent
near the goal state. Moreover, subjects who trained with
the proposed MIG shared control scheme continued to
improve even after the assistance was removed, while
members of the control group plateaued in their performance.
Finally, through our studies, we observed that subjects both
experienced immediate improvement from training with
feedback and exhibited short-term retention of the acquired
skill. These results demonstrate that the proposed hybrid
shared control paradigm enhances task learning through
forceful interaction.

In order to understand why the algorithm was effective,
we examine the unique characteristics of the hybrid shared
control paradigm as well as qualities that coincide with
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existing best practices in robotic training. Reviewing the
motor learning literature, several features of pHRI can be
identified to lead to effective training. For one, a necessary
condition for effective training through forceful interaction
is that the automation should be able to assist subjects
in completing a task while assistance is engaged. In our
experimental results, we show that the hybrid shared control
paradigm is capable of improving success in accomplishing
a dynamic task during the trials in which it was engaged.
In the MIG study in set 2, subjects performed better across
all metrics when assistance was engaged, even though on
average they started off at the same skill level in set 1.
Similarly, the subjects in the OCIP study performed better
with assistance compared to their own unassisted trials.

Secondly, interfaces should avoid user passivity and
require substantial user effort. This is inherent to our
algorithm because the hybrid controller never actively
assists with task completion by only rejecting, but not
replacing, incorrect actions. As a result, users are allowed
to fail at the task and when they succeed, they succeed
through their own actions. While impedance-based assist-as-
needed controllers can interfere less based on performance
heuristics, impedance control is based on desired velocity
profiles rather than the task goal. The hybrid shared control
paradigm discussed in this paper uses a task-based criterion
in order to measure whether or not it is needed. This allows
the controller to effectively get out of the way when users are
progressing towards the task goal on their own—maximizing
their effort.

Building on the principle of requiring effort from the
patient, shared control paradigms have been shown to be
more effective when they adapt the level of assistance over
time, assisting only as much as is necessary. The need for
modulating the level of assistance can be due to two factors:
(1) differing initial user skill level and (2) varying user
performance over time. Users are expected to progress in
their training over time. However, it is not enough for the
level of assistance to decrease over time or after a certain
performance target had been reached—there are cases, where
subjects fatigue or become less engaged if the task is too
difficult, so interfaces must be able to adjust both up and
down in response to the automation’s current assessment of
the user. In our results, we show that the proposed shared
control paradigm adapts to user initial skill and exhibits
properties of an ‘assist-as-needed’ controller, reducing or
increasing its intervention according to user performance
in real-time. In future studies, it would be interesting to
explicitly assess fatigue in between or during trials. In this
way, we could adjust assistance based on current levels of
fatigue and/or control for the effects of fatigue in study
outcomes.

All in all, we present here a hybrid shared control
paradigm that significantly improves task learning. We use
a task-based criterion to discretely switch between full user
control and full rejection of user control, which allows us
to synthesize an interface with characteristics important for
motor learning. Experimental data confirms that the shared
control scheme exhibits these characteristics.

We also found that within a single session, trained subjects
attained a higher level of performance than their counterparts
who practiced unassisted. Yet at the end of the second

session in week 2, control subjects reached the same level
of performance as the trained group. This is likely due
to the difference in when the hybrid shared control was
introduced, and indicates an opportunity to explore the
scheduling of assisted and unassisted practice over the course
of a training regimen. In future work, we plan to test
subjects in higher-dimensional tasks and make comparisons
to other assist-as-needed controllers, such as path controllers,
active constraints, and other impedance-based approaches.
In addition, we are exploring ways to define more complex
tasks where it may be difficult to define a desired trajectory
or goal state.

7 Conclusion
Numerous devices and control strategies have been
developed to facilitate forceful interaction between humans
and robots for the purposes of training specific skills or
tasks. However, it is difficult to show the efficacy of these
robots in promoting skill learning. Some types of robot-
mediated training may be detrimental to learning, and others
might be no more effective than an equivalent amount
of unassisted practice. Interfaces for pHRI that have been
shown to successfully enhance training have several features
explicitly included in their design to enhance motor learning.
Specifically, the automation must be able to assist users in
completing the task and adapt the assistance to the needs of
the individual user in terms of both initial skill and current
performance in order to promote user engagement.

In this work, we investigate the use of a hybrid shared
control method for assistance and training. The interface
allowed subjects to make errors and even fail at the task.
While the application of the filter improved subject success
rates, it did not make subjects successful all of the time.
It also avoided enforcing a specific trajectory by evaluating
the effect of user inputs on a continuous basis. Results from
two user studies with different task-based acceptance criteria
demonstrate the method’s effectiveness in both assistance
and training. Analysis of the correlations between the level
of controller engagement and the initial skill of the users
showed that the filter is sensitive to users’ skill level. While
the filter inherently adapts with every measurement of the
user inputs, the strong correlation between performance
measures and the level of controller intervention shows that
this instantaneous adaptation results in a controller that also
assists as needed according to the performance of the user in
an individual trial.
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Notes

1. Saturation limits may correspond to physical constraints e.g.
angle or torque/force limits etc.

2. Sequential Action Control (Tzorakoleftherakis and Murphey
2018) was used to compute the nominal controller action for
both criteria.However, any control policy that can be computed
in real-time could be used.

3. The time window over which the MIG integral is evaluated, T
was 1 s in the experiments discussed in this paper. In general,
the time window is chosen based on the dynamics of the system.
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Appendix A: Index to Multimedia Extensions
The experimental data presented in this article can be found
online by following the hyperlinks in this pdf or by visiting
murpheylab.github.io/data.

Table of Multimedia Extensions
Extension Type Description
1 Data Performance metrics calculated for

each trial and participant session in the
OCIP study.

2 Data An example of trajectories collected
from a single participant in their first
session without assistance in the OCIP
study.

3 Data An example of trajectories collected
from a single participant in their second
session with assistance in the OCIP
study.

4 Data Performance metrics calculated for
each trial and participant set in the MIG
study.

5 Data An example of trajectories collected
from a single participant in their first
set without assistance in the MIG study.

6 Data An example of trajectories collected
from a single participant in their second
set with assistance in the MIG study.

7 Data An example of trajectories collected
from a single participant in their third
set without assistance in the MIG study.
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