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Abstract—We propose a novel criterion for evaluating user
input for human-robot interfaces for known tasks. We use the
mode insertion gradient (MIG)—a tool from hybrid control
theory—as a filtering criterion that instantaneously assesses the
impact of user actions on a dynamic system over a time window
into the future. As a result, the filter is permissive to many cho-
sen strategies, minimally engaging, and skill-sensitive—qualities
desired when evaluating human actions. Through a human study
with 28 healthy volunteers, we show that the criterion exhibits
a low, but significant, negative correlation between skill level, as
estimated from task-specific measures in unassisted trials, and
the rate of controller intervention during assistance. Moreover,
a MIG-based filter can be utilized to create a shared control
scheme for training or assistance. In the human study, we observe
a substantial training effect when using a MIG-based filter to
perform cart-pendulum inversion, particularly when comparing
improvement via the RMS error measure. Using simulation of a
controlled spring-loaded inverted pendulum (SLIP) as a test case,
we observe that the MIG criterion could be used for assistance to
guarantee either task completion or safety of a joint human-robot
system, while maintaining the system’s flexibility with respect to
user-chosen strategies.

I. INTRODUCTION

Shared control algorithms have been developed for robotic
assistance and robot-supported training in applications ranging
from assisted vehicle navigation [2] and surgical robotics [31,
37] to brain-computer interface manipulation [30] and
exoskeleton-assisted gait [21, 40]. The aims and safety re-
quirements of these systems vary greatly, but one challenge is
often the same—how do we allocate control between the user
and the machine?

A factor to consider is user preference. In [36], machine
learning techniques were used to model user preferences for
autonomous systems, but generally studies show that users of
assistive devices prefer to maintain as much control authority
as possible [5, 44, 25], and engaging the user is critical
to robotic training [28]. Overconstraining user inputs may
prevent them from utilizing certain valid control strategies. For
instance, strict obstacle avoidance controls prevent wheelchair
users from making maneuvers that bring them too close to
a wall [25]. Users may be willing to accept loss of control
authority, but only if the improvements in performance are
significant [44, 25]. Therefore, devices are more likely to be
used if they make tasks significantly easier without limiting
users’ actions [6].

In robotic training, providing too much assistance or over-
constraining users undermines the therapeutic impact of the
device. Therefore many shared control schemes adapt their
level of support online [14, 35, 43, 12] using an algorithm
or schedule that prescribes changes based on some notion of
the user’s need for assistance. These levels of support can be
modulated based on performance measures such as error [15,
28, 34, 33], movement speed [23], and task adeptness [24],
or based on the user’s strength and fitness level [29, 21] or
current cognitive engagement in the task [8]. At other times,
the level of support can be manually adjusted by a physical
therapist or the users themselves [19].

User trust in the robot is another critical factor in the overall
performance of the joint human-machine system [17]. Trust,
in this context, mainly depends on robot performance and its
attributes, such as dependability, predictability, and level of
automation [20]. Thus, to encourage user trust, shared control
algorithms should avoid robot behavior that is difficult for the
human to understand [22], unpredictable, or unnecessary. In
task-based assistance, avoiding such behavior can be challeng-
ing, because there are often many ways of accomplishing a
task and the individual is likely to take an approach that is
different from the controllers calculated strategy. Some shared
control schemes have already been developed to adapt in real-
time to user strategies [42].

The primary contribution of this paper is a method for
evaluating and selecting admissible user input. We present
an assessment criterion that can be used in shared control
schemes to improve training or performance while remaining
minimally-engaging and flexible with respect to the user’s
approach. As our criterion for evaluation, we use the Mode
Insertion Gradient (MIG)—a concept from hybrid control
theory discussed in more detail in Section III. By calculating
the MIG, one can assess how users’ inputs affect the human-
machine system over a time window into the future and allow
inputs that are safe and/or do not hinder achieving a task goal.

Through a healthy human subject study, we show a cor-
relation between user skill-level and the acceptance rate of
the algorithm. Because we do not simply compare the user
and controller decision at each time instance, we avoid the
pitfall of arbitrarily rejecting actions that do not align with
the controller’s strategy but otherwise bring the system closer
to a target configuration. In a sense, trust in the user is



implicitly represented in the algorithm through the instan-
taneous assessment of user actions. Therefore, there is no
need to implement an adaptive scheme that explicitly assesses
user trustworthiness over time. Finally, in the human subject
study (n = 28), we observe that a MIG-based filter exhibits
a training effect compared to training with no assistance
for the tested group; in simulation, we demonstrate that a
filtering algorithm utilizing a MIG criterion succeeds in task
completion even with Gaussian noise inputs for two dynamic
tasks—cart-pendulum inversion and SLIP balancing, while
intervening minimally and remaining flexible with respect to
the user’s approach strategy.

II. METHODS

We conducted a human subject study, where we imple-
mented and tested a shared control paradigm in the form of a
mechanical filter (as shown in Fig. 1). Subjects used an upper
limb robotic platform as an interface to control a simulated
cart-pendulum system with state vector x = [θ, θ̇, xc, ẋc] and
horizontal acceleration of the cart as control input. During
experimental trials, the users’ goal was to invert the pendulum
to its unstable equilibrium. User input was inferred from a
force sensor at the robot’s end-effector and was continually
evaluated at 100Hz. During trials when the filter was engaged,
user actions were either accepted or rejected based on the
criterion described in Section III-A.
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Fig. 1: Filter-based robotic responses on the example of a hand
pushing a mass. The robot filters user input by physically accepting,
rejecting, or replacing it. When a user action is accepted, the robot
admits the force. When a user action is not accepted, the robot either
rejects it by applying an equal and opposite force or replaces it by
applying a force, such that the net effect on the system is equal to
the controller-calculated input.

A. Experimental Platform

All human subject data was collected using the robotic
platform shown in Fig. 2. The device is a powerful haptic
admittance-controlled robot that can be used to render virtual
objects, forces, or perturbations in three degrees of freedom.

Fig. 2: (top) Upper limb robotic platform used during experiments.
(bottom) The platform provides haptic feedback to simulate a spec-
ified inertial model via an admittance control scheme. A voluntary
force f(s) is measured by a force-torque sensor at the end-effector
and passed through a model M(s) that determines velocity vr(s) at
which the robot should move. The reference velocity is tracked by
the low level velocity controls, C(s), of each motor drive. In addition
to a force input, the user delivers involuntary impedance forces due
to movement, given by dynamics H(s). Acceleration information is
fed back as a pseudo-force sma for extra inertia reduction of the
system.

It is similar to the robotic platform used in [13] and [39]
to provide a means to modulate limb weight support during
reaching and to quantify upper limb motor impairments in
stroke survivors.

During the experiment, the subject was seated in a Biodex
chair with their arm secured in a forearm-wrist-hand orthosis.
The orthosis could rotate passively, and the device could move
its end-effector within a workspace defined both by its design
limits and limits set by the investigators. At the point where the
orthosis was mounted, a force-torque sensor measured subject
input, which was then fed back to the admittance controller. In
our experiments, the device was set up to physically support
the upper limb of the participant in the z-direction while
allowing them to move freely on the x-y plane.

During testing, a display provided real-time visual state
feedback to the user about the cart-pendulum system they
were attempting to invert. High stiffness virtual springs in the
haptic model were used to restrict user motion to a horizontal
plane corresponding to the path of the cart in the virtual
display. When user inputs were accepted, the control scheme
behaved as described in Fig. 2 and the end-effector motion



changed according to the applied force. When user inputs
were rejected, the measured user input f(s) was ignored in
the control scheme, such that the robot continued to move
under its predefined dynamics as if no force had been applied
by the user.

B. Experimental Protocol

Twenty-eight subjects (9 males and 19 females) consented
to participate in this study.1 All subjects completed three
sets of thirty 30-second trials with short breaks between sets.
Each trial consisted of the subject attempting to invert a
simulated cart-pendulum system, using cart acceleration as
input. At the beginning of each session, the system and task
was demonstrated to the subject using a video of a sample task
completion. Subjects were instructed to attempt to swing up
the simulated pendulum to the upward unstable equilibrium
and balance it there for as long as possible. Subjects were
instructed to continue to try to do this until the 30 seconds
were over even if they succeeded at balancing near the
equilibrium at some point throughout the trial.

Upon enrollment, subjects were randomly placed into either
a control (n = 10) or training group (n = 18). During the
second set, feedback in the form of a filter was engaged for
the training group, while the control group completed each
of the three sets without any feedback. Again, each user did
three sets of thirty trials: set 1 (both groups: no feedback), set
2 (control: no feedback, training: feedback in the form of a
mechanical filter), set 3 (both groups: no feedback).

C. Performance Measures

Several measures were calculated to quantify user per-
formance in individual trials. Specifically, time to success,
balance time, and error were calculated for all trials and subse-
quently each trial was classified as successful or unsuccessful.

A trial was considered successful when a subject reached an
angle of ±0.4 rad and angular velocity of ±0.75 rad/s for at
least 2 seconds. This success definition was used to determine
the success rate and time to success of the users in each set.
In addition, if a subject was successful, the total time spent
at an angle of ±0.4 rad and angular velocity of ±0.75 rad/s
was recorded as the balance time. Note that when users were
successful multiple times in the same trial, time spent in the
balance region was cumulative. Lastly, an RMS error of each
trajectory generated by the users was calculated with respect
to the desired position in an inverted unstable equilibrium
(zero-vector of the states). RMS error was normalized by the
RMS error of a constant trajectory at the stable equilibrium,
equivalent to the error of the user not moving from the initial
conditions.

A percent of rejected actions (PRA) was also recorded. PRA
measured the fraction of user inputs that were rejected up to
the time of a successful inversion, where we define an action
to be a non-zero user input.

1This study protocol was approved by the Institutional Review Board and
all participants signed an informed consent form.

0 5 10 15 20 25 30
Time (s)

-10

0

10

Fo
rc

e 
(N

)

accepted actions
user input

0 5 10 15 20 25 30
Time (s)

-10

0

10

20

St
at

es

Fig. 3: Example trial data from study. (top) User force input with an
indication of allowed actions in yellow. (bottom) System evolution
with green highlighting of the time during which success was
recorded. Note: Angle wrapping was not used on θ in the plot above,
but it was used in the calculation of all performance measures.

Data from an example trial is visible in Fig. 3. In this case
the trial was successful, with time to success = 8.3s, balance
time = 19.7s, and RMS error = 0.57. The PRA was 13%.

III. THE EVALUATION CRITERION

We present a new application for the Mode Insertion Gra-
dient (MIG), which, to the authors’ best knowledge, has not
been previously used to assess human actions. Primarily a
tool used in hybrid control theory, MIG can be interpreted
as the sensitivity of a cost function to a discrete control
input. Here, we use MIG to assess the impact of a user
action on the evolution of a dynamic system over a time
window into the future. We then utilize it as an evaluation
criterion for a filter-based shared control paradigm and gather
data to determine whether it serves as an objective, strategy-
independent assessment criterion of user actions.

A. Mode Insertion Gradient (MIG)

Usually, the mode insertion gradient dJ
dλ is used, in mode

scheduling problems, to determine the optimal time τ to insert
control modes from a predetermined set [11, 41, 18, 4, 7].
Here we use the mode insertion gradient,

dJ

dλ
(τ) = ρ(τ)T [f(x(τ), u2(τ))− f(x(τ), u1(τ))] , (1)

as a measure of the sensitivity of the cost to a change from
the nominal control, u1, to a particular user input, u2. In (1),
state x is calculated using nominal control, u1, and ρ is the
adjoint variable calculated from the nominal trajectory,

ρ̇ = −∇l1(x)−Dxf(x, u1)
T ρ,

where l1(x, t) is the incremental cost and ρ(tf ) = ∇m(x(tf )).
Moreover, in the work presented here, we assume the nominal
control, u1, to be equivalent to a null action (u1(t) = 0), and
we define u2 with the piece-wise function below,

u2(t) =

{
uuser t ≤ ts
u1 ts ≤ t ≤ T



where ts is the sampling time, T is the time window over
which we’re evaluating system behavior, and uuser is a user
input recorded at current time t. It’s worth noting that, in future
work, u2 could instead be defined by a combination of user
input at current time t and actions from an optimal controller
over time T into the future. This would add further flexibility
to the criterion and give the user more control authority
over the joint system, because any user action that could be
corrected for by an optimal action without destabilizing the
system during the time window T would be admitted.

When using MIG as an evaluation criterion, we calculate the
integral of the mode insertion gradient over a time window T
into the future ∫ tnow+T

tnow

dJ

dλ
(t)δt, (2)

to evaluate the impact of user control u2 on the system over
time T . When negative, the integral has been shown to indicate
that u2 is a descent direction over the entire time horizon [27],
in a manner similar to the conjugate gradient descent method
[26], and thus serves as the basis for evaluating the impact of
a current user action on the evolution of a dynamic system
over that time window into the future. Moreover, stability can
be inferred if (2) satisfies a contractive constraint [10].

Algorithm 1 A filter with MIG criterion.

Set sampling time ts and time horizon T . Set mode m to either
training (T ) or assistance (A). Define objective function for
filter and controller.

1: while t0 ≤ tf do
2: Infer user control vector uuser from sensor data
3: Simulate x(t) and ρ(t) in [tnow, tnow + T ] assuming

u =

{
uuser t ≤ ts
0 ts ≤ t ≤ T

4: Compute
∫
dJ
dλ

5: if
∫
dJ
dλ ≤ 0 then

6: unow = uuser
7: else
8: if m = T then
9: Assign controller value unow = 0

10: else if m = A then
11: Calculate optimal control ucontroller*
12: Assign controller value unow = ucontroller
13: end if
14: end if
15: Apply unow for t ∈ [tnow, tnow + ts]
16: end while

*Note that the filter can be used with any model predictive
controller (MPC) that can complete the task. Here a controller
similar to [4] was used, but rather than using a single control
value at a particular time as the control update, the entire
control schedule was employed [27, 26].

In our experimental study, we utilize the MIG criterion in
a filter-based shared control scheme. For an outline of the
approach, refer to Algorithm 1. There are two modes for the
MIG-based filter: a training and an assistance mode. In the
training mode, no action is applied when the user’s input is
rejected. In the assistance mode, the robot is engaged to apply
a controller-calculated action. An objective function defined
as

J =
1

2

∫ tf

to

‖x(t)− xd(t)‖2Q + ‖u(t)‖2Rδt, (3)

with Q ≥ 0 and R ≥ 0 being metrics on state error and control
effort and xd(t) being the desired trajectory, is used for the
filter and model predictive controller (MPC).

B. Simulated User Results

In simulation, we show how controller intervention changes
according to the skill level of a user. We note close to
0% intervention for a simulated skilled user and ∼ 50%
intervention for noise input in the one-dimension-controlled
task of inverting a pendulum.

TABLE I: Cart Pendulum Simulation Setup.

OBJECTIVE

simulated
skilled user

xd(t) = [0, 0, 0, 0]
Q = [200, 0, 50, 0] R = [10]

MIG filter xd(t) = [0, 0, 0, 0]
Q = [200, 0, 0, 0] R = [0.2]

To create the simulated skilled users, we utilize a model
predictive controller with objectives representing successful
inversion strategies. An example objective includes inverting
the cart-pendulum while minimizing energy and staying close
to the origin—the exact function parameters are given in Table
??. To approximate an unskilled user, we generate noise input.
We then filter user actions using a MIG-based algorithm with
a high-level objective function also listed in Table ??. There
are many reasonable choices for the cost on the simulated
users, but for the MIG filter, we chose to emphasize the goal
of inversion by placing a high weight on the angle θ.

Note that for simulated users the relationship between skill
and controller intervention is explicit (0% intervention for an
always successful user and ∼ 50% for noise input). With
human subjects, we can only approximate their skill level and
thus the relationship is more difficult to assess.

C. Human Study Results

A human study was conducted to determine whether a re-
lationship could be observed between participant skill level—
estimated based on performance in unassisted trials—and the
frequency of controller intervention in the MIG filter mode.
In this case, we calculate the success rate of the 30 trials
from set 1 to approximate user skill level. We then use
percent of rejected actions (PRA) values from individual trials
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Fig. 4: A correlation coefficient of −0.14 is observed between
the success rate of the users in set 1 with no assistance and the
rejection rate of the users’ inputs in set 2 with assistance, suggesting
a correlation between the users’ adeptness at the task and the
controller’s intervention rate during assistance.

in set 2 from the same users to identify the correlation—a
scatter plot with the results is visible in Fig. 4. A Pearson
product-moment correlation coefficient was computed and a
low negative correlation (r = −0.14, confidence interval
(−0.22)−(−0.06), p = 0.001) was identified between overall
success rate in set 1 and PRA in individual trials of set 2 for
the training group (n = 18). Similar but weaker correlations
were identified between controller intervention and other task-
specific metrics, such as balance time (r = −0.09, confidence
interval (−0.17) − (−0.007), p = 0.03) and time to success
(r = 0.11, confidence interval 0.086− 0.25, p = 0.01).

Since subjects showed significant improvement during set
1 while getting used to the task and testing platform, we ran
the same statistics using only the last 10 trials of set 1 to esti-
mate participant skill level. Again, a Pearson product-moment
correlation coefficient was computed and a low negative cor-
relation (r = −0.20, confidence interval (−0.28) − (−0.11),
p = 4.5 · 10−6) was identified between overall success rate
in the last 10 trails of set 1 and PRA in individual trials of
set 2. Similar correlations were identified between controller
intervention and other task-specific metrics, such as balance
time (r = −0.13, confidence interval (−0.21) − (−0.04),
p = 0.003) and time to success (r = 0.21, confidence interval
0.13− 0.29, p = 7.3 · 10−7).

Overall, for an experimental group of 18 participants, we
obtained low but significant correlations [9] between indepen-
dently measured performance metrics and rejection rate in as-
sisted trials, suggesting a relationship between the users’ skill
level and the MIG filter’s rate of intervention, respectively.
Because the correlations are weak, additional subjects and
analysis of other tasks are needed before the skill sensitivity is
conclusive. However, our initial findings suggest that a MIG
criterion is a skill-sensitive paradigm that can be used for
shared control. As the next two sections detail, it substantially
increases improvement during training as compared to training
with no feedback and, in simulation, it improves task success
and safety when used for assistance.
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Fig. 5: Set was consistently the most significant factor in performance
improvements from set 1 to set 3. As expected, pairwise comparisons
of the two groups in set 1 show that there was not a significant
difference in their baseline performance measurements. However, the
RMS error, balance time, and time to success of the training group
in the final set was significantly better than that of the control group.
Note: error bars indicate standard error; significance is indicated by
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

IV. MIG FOR TRAINING

A two-factor repeated measures ANOVA was used to assess
the effects of the group (between-subjects) and set (within-
subjects) on all performance measures listed in section II-C
(Fig. 5). The training group and control group were evaluated
based on set 1 and set 3 only. Set 2 was left out of the ANOVA,
so that effects of the assistance itself would not be measured
in the analysis.

The factorial ANOVA revealed that the effect of group
(F (1, 50) = 0.981, p = 0.327) and the interaction effect
(F (1, 50) = 0.111, p = 0.740) of the group and set on the
success rate were not significant. The main effect of set yielded
an F ratio of F (1, 50) = 7.555, p = 0.008, meaning that users
were more successful in set 3 (mean = 0.280, SD = 0.223)
than in set 1 (mean = 0.140, SD = 0.100) regardless of
the type of practice in set 2. Pairwise comparisons were made
between set 1 and set 3 of each group using a paired 2 sample
t-test. The change in success rate from set 1 to set 3 was
significant for the control group (t(9) = 3.152, p = 0.012)
and the experimental group (t(17) = 3.127, p = 0.006).
Although set was the predominant factor in success rate, the
the effect size of the training group (d = 0.94) from set
1 to set 3 was larger than the effect size of the control
group (d = 0.77). Note that the control group continued to
improve their success rate with each set, possibly because
their interaction with the robot did not change between sets
as it did for the training group. Pairwise t-tests of the training
group and control group showed that the difference in success



rate between the training group and the control group was not
significant for any of the three sets.

A factorial analysis of variance, evaluating the impact of
training group and set on the RMS error showed that the
main effect of group (F (1, 26) = 1.615, p = 0.215) was not
significant. Therefore, there was not a significant difference
between the training group (mean = 0.612, SD = 0.088)
and the control group (mean = 0.639, SD = 0.067).
The main effect of set yielded an F ratio of F (1, 26) =
41.551, p < 0.001 indicating a significant difference between
set 1 (mean = 0.651, SD = 0.085) and set 3 (mean =
0.599, SD = 0.072). The interaction effect of group and set
was significant (F (1, 26) = 5.099, p = 0.0326), implying that
the training had a greater impact on set 3 performance than
the unassisted practice of the control group.

There was no significant effect of group on balance
time (F (1, 26) = 1.562, p = 0.223) or time to success
(F (1, 26) = 1.114, p = 0.301). There was also no sig-
nificant interaction effect of group and set on balance time
(F (1, 26) = 1.048, p = 0.315) or time to success (F (1, 26) =
1.512, p = 0.22983). The main effect for set on the balance
time yielded an F ratio of F (1, 26) = 15.328, p < 0.001,
indicating a significant difference between the balance time
in set 1 (mean = 0.408, SD = 1.053) and set 3 (mean =
0.866, SD = 1.476). The main effect of set on time to success
was also significant (F (1, 26) = 18.992, p < 0.001), with
set 3 (mean = 27.830, SD = 4.433) outperforming set 1
(mean = 28.955, SD = 3.175). According to 2-sample t-
tests, the difference between the balance time of the control
group and training group in set 1 was not significant, but the
set 3 balance time of the control group (mean = 0.632, SD =
1.261) was significantly less (t(728) = 3.643, p < 0.001) than
the balance time of the training group (mean = 0.994, SD =
1.568). The time to success was also significantly better
(t(738) = 3.110, p = 0.002) in set 3 of the training group
(mean = 27.500, SD = 4.744) compared to set 3 of the
control group (mean = 28.43, SD = 3.74).

In summary, pairwise comparisons within each of the four
measures (success rate, RMS error, balance time, and time
to success) showed that in set 1 there was not a significant
difference between the training group and control group,
suggesting that on average the two groups started off with
the same skill at the task. Set had a significant effect on
increases across all metrics, indicating that participants were
continuously improving with time regardless of the feedback
that was provided. Although there was not a significant effect
of group on any of the metrics, the RMS error showed that
there was a significant interaction effect between group and
set. This is indicated in Fig. 5 by the two groups having
similar means in set 1 but significantly different means in
set 3. Moreover, when training group and control group were
compared in set 3, the training group performed significantly
better. Finally, we observe that when in use during set 2 of
the training group, the MIG filter had a significant effect on
reducing the RMS error, while it did not have a significant
effect on success rate, balance time or time to success. Hence,
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Fig. 6: For the cart pendulum inversion task, noise input with a
MIG-based filter in assistance mode is able to invert the pendulum
in 100 out of 100 of the simulation ran. (top, middle) An example
trial with the system evolution and filtered input are shown. (bottom)
Convergence results from all 100 trials.

we can reason that the MIG filter guided users through the
task without getting in the way or accomplishing the task for
them.

V. MIG FOR ASSISTANCE

Whereas during training, we allow users to fail at task
completion for improved learning, during assistance in tasks,
such as activities of daily living (ADL), we may want to insist
on task success, user safety, or both. In these situations, we
can modify the proposed filter to actively provide assistance.
Instead of using a null controller input as the alternative to user
input, we can engage the controller and replace rejected actions
with optimal control, calculated by an MPC. In the next two
subsections, we provide simulation results that demonstrate
system behavior when the MIG-based filter is employed in
assistance mode.

A. Cart Pendulum - Task Completion

A series of 100 Monte Carlo simulations demonstrate a
100% success rate for filtered noise input in the cart pendulum
inversion task, suggesting that a MIG-based filter could be
employed in situations where task completion is crucial. Sys-
tem behavior, simulated user input, and controller intervention
during an example trial are visible in Fig. 6. Results of the
100 trials with noise input are also shown.

B. SLIP - Safety

Lastly, we analyze the performance of MIG-based assistance
on a spring-loaded inverted pendulum (SLIP) model. The
SLIP is a hybrid, low-dimensional system that has been
shown to be a reliable approximation of human running [38]
and is therefore used to model running dynamics in robotic
locomotion [3]. Here, a 2D SLIP model is tested with a state
vector described by x = [xm, ẋm, zm, żm, xt], where xm and



zm are the coordinates of the mass, and xt is the coordinate of
the toe, and a control vector described by u = [us, ut], where
us is the leg thrust applied during stance and ut is the toe
velocity control applied during flight. Hybrid dynamics of the
form

fstance =


ẋm

(k(l0−ls)+us)(xm−xt)
mls
żm

(k(l0−ls)+us)zm
mls

− g
0


and fflight = (ẋm, 0, żm,−g, ẋm + ut) are used. Parameters
k, l0, and m describe the SLIP model spring constant, resting
spring length, and mass, respectively. All parameters were
given a value of 1 in our simulations. To determine switches
between stance and flight modes, a guard equation φ(x) is
employed

φstance→flight(x) = φflight→stance(x) = xm −
l0
ls
zm

with ls being the leg length during stance

ls =
√
(xm − xt)2 + z2m.

In the experiments, we use input from simulated users
of different skill level, which we generate using MPC with
objective functions outlined in Table ??. We approximate an
unskilled user using Gaussian noise; a low-skill user using
MPC with a height objective lower than the spring length that
causes the SLIP to fall; and a skilled user using MPC with a
feasible objective such that the controller can achieve forward
motion without assistance.

We show that with the MIG filter in assistance mode the
SLIP can be kept upright even when input is provided by
Gaussian noise or a low-skill user. From Fig. 7 we see that
for noise input the filter allows the foot to make random
movements and the SLIP to change direction, while keeping
the center of mass oscillating around a safe constant height.

For a low-skill user, the assistance prevents the SLIP from
falling, while allowing it to maintain its desired forward

TABLE II: SLIP Simulation Setup.

OBJECTIVE

low-skill
user

xd(t) = [0, 0.7, 0.7, 0, 0]
Q = [0, 150, 100, 0, 0] R = [0.1, 0.1]

skilled
user

xd(t) = [0, v(t), 1.7, 0, 0]
Q = [0, 150, 100, 0, 0] R = [0.1, 0.1]

v(t) =

 0.2m/s 0s < t ≤ 8s
0.2 + 0.05(t− 8)m/s 8s < t ≤ 16s
0.6m/s 16s < t ≤ 24s

MIG filter
& controller

xd(t) = [0, 0, 1.4, 0, 0]
Q = [0, 0, 5, 0, 0] R = [0.1, 0.1]
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Fig. 7: We simulate a SLIP model using Gaussian noise as user input
and the MIG-filter in assistance mode for support. Note that the filter
allows the foot to make random movements and the SLIP to change
direction, while keeping the center of mass oscillating around a safe
constant height. The controller overrides the user’s input for ∼ 70%
of the simulation time.
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Fig. 8: (top) We simulate a low-skill user that attempts to move
forward with no assistance. The SLIP falls after ∼ 5.5s. (bottom)
We use the same user simulation but now the controller helps the
user keep balance without restricting its forward motion. With under
40% controller intervention, the SLIP establishes a cyclic gait and
maintains an average speed of 0.98 m/s (close to the user’s desired
1 m/s).
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Fig. 9: (top) We simulate a capable user that attempts to move forward
with varying velocity. (bottom) We simulate the same user with added
assistance. Note that the assistance does not impede the user’s forward
motion, even though the controller has no a priori knowledge of the
user’s desired velocity. The controller intervenes ∼ 20% of the time.

velocity, as visible in Fig. 8. Finally, when provided with
input from a skilled user, the filter allows the user to dictate its
desired forward velocity and interferes only minimally with its
desired motion, as visible in Fig. 9. The controller overrides
user input for ∼ 70% of the time for noise input, for under
40% of the time for a low-skill user, and for ∼ 20% of the
time for a skilled user.



Based on these results, the MIG criterion shows promise to
be used in applications, such as lower-limb exoskeletons [19].
In walking assistance, we want to at all cost prevent users
from falling, while at the same time giving them freedom to
follow their natural gait pattern, walk at a desired pace, and
change speeds or stop when convenient.

VI. CONCLUSION

A variety of shared control paradigms have been imple-
mented to provide assistance to users in settings where the
task is known a priori. Although users might prefer to maintain
control and user engagement is necessary for learning, many
applications require a certain level of control authority to
be allocated to the machine in order to guarantee safety,
successful task completion, or both. As such, most interfaces
employ support strategies that in various ways restrict or adjust
users’ actions in order to enable the subject and the device to
move in a safe and stable manner. In this paper, we present
and evaluate an assessment criterion for user input that can
be utilized in these shared control paradigms. We carry out
experiments by using the MIG as an evaluation criterion in
a filtering assistance scheme, similarly to [1, 16], where user
actions deemed by the filter as incorrect are either blocked or
hindered by the hardware interface.

With only current state information, our proposed filter
can both reject unhelpful inputs and remain transparent to
operators with significant skill. For complex dynamic tasks,
such as walking with an exoskeleton, the algorithm can help
provide meaningful assistance and ensure safety of the system
and operator without limiting the user’s freedom. It can,
like adaptive methods, enhance human-system performance
while avoiding some of the common long-term pitfalls of
“static” automation such as over-reliance, skill degradation,
and reduced situation awareness [32].
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